The exponential mapping in Clifford algebras

John Froelich
Department of Mathematics, The University of Iowa, Iowa City, Jowa 52242

Nikos Salingaros
Division of Mathematics, Computer Science and Systems Design, The University of Texas at San Antonio, San
Antonio, Texas 78285

(Received 13 October 1983; accepted for publication 27 December 1983)

The exponential mapping takes the Lie algebra of the Lorentz group into the Lorentz group. Each
element of the group is defined as a formal power series, while the product of two exponential
elements usually involves an infinite sum of commutator terms, such as in the Baker—-Campbell-
Hausdorff formula. Because of the special arithmetic in Clifford algebras, many Baker—
Campbell-Hausdorff-like formulas and identities can be calculated or summed exactly when they
involve only elements from the algebra. We calculate exact identities for the Baker—Campbell-
Hausdorff formula and related formulas in the quaternion and dihedral algebras. These are useful
in treatments of the Lorentz group, and make possible a truly finite (as opposed to infinitesimal)

description of a transformation group in physics.

PACS numbers: 02.10. 4+ w, 02.20. + b

I. INTRODUCTION

The Lorentz group is the basis for the description of
physical fields in space-time. A general element of the Lor-
entz group combines a pure Lorentz transformation (boost)
with a rotation in three-space. Mathematically, the boosts
and spatial rotations are described on an equal footing, yet
the physical processes they describe are entirely distinct. For
this reason, it is convenient and often necessary to separate
the spatial rotation part from the boost part of a general
Lorentz transformation. The mathematical description nat-
urally mixes them, and a complete separation is highly non-
trivial. This problem has not been solved previously in any
generality, because the usual treatments of the Lorentz
group are almost exclusively concerned with infinitesimal
transformations. For that purpose, the usual local Lie alge-
bra characterized by the structure constants and the com-
mutation relations is sufficient, and is generally followed in
physical discussions. 2

In contradistinction, the description of the Lorentz
group as a finite Lie transformation group requires the ex-
ponentiation of the corresponding Lie algebra.>* The expo-
nential mapping is in principle well known, but exact forms
are not available for computations. Formulas such as the
Baker—Campbell-Hausdorff formula*™'! are given as an infi-
nite series of commutator terms which cannot in general be
summed explicitly.

Recently, we have tried to formulate a physical problem
directly in the Lie group,'? and have applied the exponential
mapping to describe the motion of a charged particle in an
electromagnetic field.'>'* Those results are, however, given
only in the first few terms corresponding to the commutator
expansion of the exponential mapping.

In this paper, we consider the exponential mapping in a
Clifford algebra. Since a Clifford algebra is algebraically
closed, it follows that all exponentials, and therefore the ex-
ponential map, can be written exactly in terms of elementary
functions. One can in this case completely sum all of the
commutator terms in the exponential.
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The solution of a problem which is obtained directly in
the Lie transformation group can therefore be given exactly.
Such solutions have not been available in the past because of
the considerable difficulty in providing an exact finite de-
scription of a Lie transformation group such as the Lorentz
group. The possibility of giving an exact as opposed to an
approximate description of certain physical systems follows
a three-step logic. Some systems believed to possess an exact
solution in fact do not, since that solution is purely local.
After noting this limitation, one may obtain a more accurate
though still approximate solution by adding higher-order
terms derived from the exponential mapping. An example of
this procedure is discussed in Refs. 12 and 13. The final step
is to obtain the genuinely exact solution of the physical sys-
tem by including all the terms from the exponential map-
ping. The physical consequences of this result are more ap-
propriately discussed elsewhere; here we present the
mathematical identities that make such exact solutions pos-
sible.

Il. THE EXPONENTIAL MAPPING IN THE QUATERNION
ALGEBRA

In a description of finite automorphisms, it is frequently
the case that the generators of one transformation are or-
thogonal to the other transformation. Examples of this are
spatial rotations about two orthogonal axes, or a spatial rota-
tion compared with a pure Lorentz transformation (boost).
In these physically relevant cases, the infinitesimal genera-
tors of the transformations define a subalgebra of the full
algebra of the automorphism group. In certain special cases
it is possible to write down the transformation operators,
which are exponentials, exactly.

The first case considered here is when the transforma-
tions define a quaternion subalgebra. The algebraic rules are
given by the usual anticommuting basis elements e,, e,, and
e;, with product V (see Table I):

e, Vo= —8, +e€uen, ik=123 (1)
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TABLE 1. Multiplication table for the quaternion algebra.

\% e e, s

e, -1 e; —e
e, — e, -1 e,
e €, —e —1

This paper is concerned with providing an exact solu-
tion of the following concrete problem: How can we separate
an exponential containing e, and e, into the product of two
exponentials, each containing e, and e, separately. Because
the exponential mapping generates an infinite number of
commutators, these expressions will contain higher-order
terms in e,. For the purpose of the physical applications in
mind, the correction terms in e; are grouped with e, instead
of with e,. The expression that is to be solved is therefore the
following:

exp(xe, + ye,) = exp( Bie, + Byes) V exp(ye,). (2)

Here, x and y are scalars; the three scalars 53,, 35, and ¢
are functions of x and y (there is no 3, in this exercise). The
above separation uniquely determines £, 5, and y: a related
expression was given approximately in a previous paper.'?
These functions may be determined by a process of straight-
forward algebraic manipulation. Because this procedure and
the ensuing result is unusual, some of the details are given.
First, recall the direct expressions for the individual expon-
entials in the Clifford algebra'?:

expiB.e, + Bses) = cos B+ [(B,e, + Bses)/B Isin B,

B=\Bi+B;. (3)

(In the above exponential, it does not matter which two out
of the three quaternion basis elements appear in the expo-
nent.}

Expression (2) may be expanded out, then separated
into a scalar component and the coefficients of the elements
ey, e,, and e;, to obtain the following set of equations:

cosz=cosffcosy, z= N (4a)
(x/z)sinz=(B,/B)sinBcosy —{B:/B)sinBsiny, (4b)
(p/2)sin z = cos B sin ¥, (4¢)
0=(B:/B)sinBcosy+ (B,/B)sin fsin . (4d)

Dividing (4c) by (4a) gives an expression for y as a func-
tion of x and y:

tan y = ( y/z)tan z, (5a)

=y = arctan ( y tan z/z). (5b)

Equation (4a) is used to obtain 3

cos B = cos z/cos y = = arccos(cos z/cos ¥). (6)

Equation (4d) alternately gives the identity

tany = — f3,/B,, (7
which may be used to obtain cos ¥ and sin ¥ by elementary
trigonometry:

cosy= +B/B, siny= FB,/B. (8)

Equations (8) trivially give £, and 3, in terms of § and ¥
as
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By= £ Bcosy, By= FBsiny. (9)
The functions cos y and sin ¥ may be written in terms of
x and y by utilizing Eq. (5a):

cos ¥ = +z/\x% + )7 sec?z, (10a}
siny = + ytanz/y/x + y? sec’ z. {10b)

Finally, ,, 35, and y are obtained as functions of x and y by
using (6), (9), and (10). The combination P has been defined
for convenience. The signs are determined by the behavior at
the limit of small positive parameters:

B, = {cos z/P)arccos P,
B, = (— y sin z/zP )arccos P,

P=yx*cos’z+)*/z, z=\x*+)?,
y = arctan ( y tan z/z). (11)

These functions give an exact result for the exponential
identity (2). This is one of the few instances where an expo-
nential identity of this type is given exactly.

We should note that an equivalent solution of Egs. (4)
can be obtained via Cramer’s rule. That method has the ad-
vantage of a priori forcing the correct sign upon the result.

IIl. THE EXPONENTIAL MAPPING IN THE DIHEDRAL
ALGEBRA

Consider the exponential mapping in the dihedral alge-
bra N,.'*'® This algebra is also known as the “generalized
quaternions™ and is defined by the three anticommuting ele-
ments e,,e,,e,, where two of these have square equal to + 1
while the third one has square equal to — 1. The multiplica-
tion properties are given in Table II. (There are six possible
definitions of N,, all permutation-wise equivalent.)

The problem addressed is still the same, namely to sepa-
rate the exponential (2) exactly in the dihedral algebra. Be-
cause of the change in metric, the situation is not as simple as
in the case of the quaternion algebra. This comes about be-
cause the square of xe, + ye, has three possible branches,
each necessitating a separate investigation. From the alge-
braic rules (Table II), the square of this element is always
equal to

(xe, + ye,) V (xe; + ye,) = x* — y*. (12)

The three cases arise as this expression (12) is positive,
negative, or zero. It is convenient to define the following
positive, real quantities y and ¢ as follows:

(i) x =vx*—»%, when |x|> |y, (13a)
(i) ¢ =\y" —x%, when |y|>|x|, (13b)
(ili) y* ~ x* =0, when |y| = |x|. (13¢)

The exponentials in each respective case are given by
the following expressions:

TABLE II. Multiplication table for the dihedral algebra.

\ e, e, 2,
e 1 ey e,
e, — e —1 e,
e —e, —e 1
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(i) explxe, + ye,) = cosh y + [(xe, + ye,)/x]

Xsinhy, [x]|>]y], (14a)
(i) exp(xe, + ye,) = cos ¢ + [(xe, + ye,)/¥]

Xsiny, | y|>|x], (14b)
(iii) explxe, +ye;) =1+xle, &) [x|=]y| (14c)

Case (i) is examined first. Following the same procedure
as in the previous section, one obtains an analogous set of
expressions after separating terms [note that expression (3)
now changes to hyperbolic functions):

cosh y = cosh B cos 7, (15a)
(x/y)sinh y = (3,/B )sinh B cos ¥ — ( B3/ )sinh [ sin ¥,

(15b)
(y/y)sinh y = cosh B sin 7, (15¢c)
0 = (B,/B)sinh B cos ¥ 4 (B,/B )sinh Bsin 7. (15d)

Proceeding as above, divide (15¢) by {15a) to obtain the
analogous expression to (5),

(16a)
=> ¥ = arctan(y tanh y /y ). (16b)

Equation (15d) gives exactly the same relations as before:
Eqgs. (7)-(9). From Eq. (15a}, one can solve for £ to obtain the
analogous relation to (6),

(y/y)tanh y = tan y,

[ = arccosh(cosh y /cos y). (17)

The expressions for cos ¢ and sin ¥ are obtained from
tan y (16a) as follows:

cos ¥ = + y/Vx? —pFsech®y, (18a)
siny = + y tanh y /Jx* — y?sech’ y . (18b)

Finally, the expressions for £,, 3,, and ¥ are obtained in this
case from (17}, (18), and (9):
Case (i) B, = (cosh y /Q Jarccosh Q,
B3 ={— ysinh y /yQ )arccosh Q,
Q=\x"cosh’ y —y*/y, x =" =)

y = arctan( y tanh y /y).

These equations (19) provide an exact solution for the
separation (2) in the dihedral algebra, under the special con-
dition |x| > | y|.

It is very easy to go through the same calculations for
case (ii), when | y| > |x|. The results are the following:

B, = (cos ¥/R )arccosh R,
By = —{ysin ¥/¥R Jarccosh R,
R=\y—x*cos’ §/4, ¢="—x,
y = arctan ( p tan ¥/9).

Note that both functions Q and R are defined for all
values of x and y in each respective case. The remaining case
occurs when |x| = | y|. In this case, the solution is the sim-

plest, and is given as follows (for simplicity, we have assumed
x=y>0

(19)

Case (ii)

(20)

Case (iii) B, = arccosh 1 + x2/1 + x2,
By = — x arccosh 1 + x2/y/1 + X2, (21)
Y = arctan x.
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This completes the solution of the exponential identity
{2) for all values of x,y, when the problem takes values in the
dihedral algebra.

IV. AN EXACT FORM OF THE BAKER-CAMPBELL-
HAUSDORFF FORMULA

While the separation of the rotation from the boost in
the Lorentz group requires the identity derived in the pre-
ceding section, the exponential mapping is usually described
by means of the Baker—Campbell-Hausdorff formula.*"!
We provide exact forms of this and a related formula when
the elements take values in a Clifford algebra. The derivation
is much simpler than for the formulas previously derived,
and again involve only elementary functions. The exact iden-
tities which we wish to obtain are the following, with
a=3’_, ae and §=Z3]_, e, to be determined:

explxe,) V exp(ye,) = expla), (22a)

(22b)
These are easy to calculate directly. As before, we treat
the quaternion case first. Expanding (22a) in the quaternion

algebra and separating gives the identities [here,
a=(a} + a3 +ai)'?):

exp(xe,) V exp(ye,) V exp( — xe,) = exp(§).

COS @ = COS X COS y, {(23a)
(a,/a)sin a = sin x cos p, {23b)
(a,/a)sin a@ = cos x sin y, (23¢)
{@y/a)sin a = sin x sin y. (23d)
From (23a), the value for a is obtained:

a = arccos{cos x cos p). (24)

By squaring (23b), (23c), and (23d) and adding, the coeffi-
cients are easily computed as

__sin x cos y arccos(cos x cos y)
1 b

(1 — cos® x cos? y)'/?

__ €OSs X sin y arccos(cos X cos y)
a = 2 2,172 ’
(1 — cos* x cos® y)

__sin x sin y arccos(cos x cos y)
(1 — cos? x cos? p)!/?

The coefficients «, (25) substituted in (22a) give an exact
form for the Baker—Campbell-Hausdorff formula in the
quaternion algebra.

The second exact identity (22b) is also derived here in
the same fashion. Expanding the exponentials and separat-
ing as above gives the following relations:

(25)

aj

cos § = cos y, {26a)
56 =0, (26b)
(£2/€ )sin & = sin y cos 2x, (26¢)
(£5/¢ )sin £ = sin p sin 2x. (26d)

Equations (26a) and (26b) imply that y = £
= (£2 + £2)"/2. This expansion (22b) therefore assumes the
particularly simple exact form in the quaternion algebra:

exp(xe,) V exp(ye,) V exp( — xe,)
= exp[ y cos(2x)e, + y sin(2x)e,]. (27)

It is instructive to compare this identity with the usual
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result obtained from the series expansion. The following for-
mula is given in Ref. 5, p. 372:

exp( — 4 Jexp(B Jexp{4 ) = exp( i {847} ), {28a)

n=2~0 n!
{BA"} = [~[B,A],A],~],4] n times. (28b)
Setting 4 = — xe, and B = ye, in (28) gives a trigonometric

series which is easily seen to be precisely the result obtained
above (27);

n

S Llpes—xey} = 3 (= U E el
— (Zx)Zn i
ynZO (2’1)' ) €
P

z (2n + 1)'
=y cos(2x)e, + y sin(2x)e;. (29)

This completes our derivation of the Baker-Campbell-
Hausdorff and the related formulas (22a) and (22b) in the
quaternion algebra.

For completeness, we include the analogous results for
cases in the dihedral algebra, where e = + 1,62 = — 1,
and e e, = e,. The formulas for (22a) and (22b) are given for
appropriate values of the parameters, as follows:

explxe,) V exp(ye,) = exp(a,e, + a,e, + a;e;),

__arccosh(cosh x cos y)sinh x cos y

B (cosh? x cos? y — 1)'/? ’

__arccosh{cosh x cos y)cosh x sin y
(cosh? x cos?y — 1)!/2

_ arccosh{cosh x cos y)sinh x sin y (30a)
(cosh? x cos? y — 1)'/2 ’

b
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exp(xe,) V expl ye;) V exp( — xe,)
{30b)

These are exact formulas for the expansions (22a) and
(22b) in the dihedral algebra. Corresponding formulas for
regions of the domain where Eqgs. (30) are not defined are also
easily derived.

In conclusion, we hope to have illustrated how the ex-
ponential mapping in Clifford algebras can be expressed in
closed form using only elementary functions. The identities
obtained are of importance in solutions of physical prob-
lems. In addition to the examples given here for the quater-
nion and dihedral algebras, we have indicated that one may
do this directly for any larger Clifford algebra in general.

= exp[ y cosh(2x)e, + y sinh(2x)e; ].
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A review of the applications of the octonions in physics is given. A construction is presented. Both
the Cayley—-Dickson algebras and the Clifford algebras arise naturally under this construction
from the quaternion algebras. The mathematical properties of the algebras constructed are

discussed.
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I. INTRODUCTION

Clifford algebras are being widely used as mathematical
tools for the descriptions of physical phenomena. The appli-
cations range from the traditional problems to candidates
for unified descriptions in nature (see Refs. 1-7).

It is well known that the field R of real numbers, the
complex numbers C, and the quaternion division ring H can
all be generalized as real algebras in two different ways into
higher dimensions. The generalizations are the Clifford alge-
bras and the Cayley—Dickson algebras. The octonions & (or
Cayley numbers) are an eight-dimensional Cayley-Dickson
algebra. Faulkner and Ferrar® emphasize that all notions of
exceptionality in algebra and in geometry are manifestations
of one underlying structure; that is, nonclassical Lie alge-
bras, nonassociative alternative algebras, nonspecial Jordan
algebras, and non-de Sarguesian projective planes are all re-
lated, in one way or another, to the octonions. The purpose
of this paper is to demonstrate that there is essentially one
construction and that both families of algebras arise natural-
ly under this construction from H.

Current interest in the use of octonionic structures was
initiated by Giirsey,” who noted that specializing one of the
seven nonscalar Cayley units (to play the role of the imagi-
nary unit) automatically achieves a rationale for Su(3), . That
idea of Giirsey and Giinaydin'’ is elaborated on in the paper
of Horwitz and Biedenharn* where the octonionic multipli-
cation rules are reproduced in a minimal ideal of 4 *7 [Su(3),
is identified as a subset of the automorphisms of 4 7 that
leave this minimal ideal invariant). A Hilbert space over the
real Clifford algebra 4 ®7 is discussed as a potential model for
the unification of weak, electromagnetic, and strong interac-
tions utilizing the exceptional Lie groups.

Truini and Biedenharn,'! using the concept of a Jordan
pair, show that two copies of the 3 X 3 matrix algebra with
entries from the complex octonions (.#5) can be used to de-
fine a quantum mechanics over the complex octonion plane
having € s ® % (1) as automorphism group. The group
€ s® (1) is large enough to accommodate a color-flavor
structure which is not ruled out by experimental evidence. In
this quantum mechanics, the concept of observable becomes
the concept of Hermitian pairs, the standard Wigner relation
in which infinitesimal symmetry generators are directly re-
lated to observables is recovered, and time reversal can be
implemented. This structure is neither a projective geometry
nor a lattice.
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Dixon'? constructs a symplectic algebra based on
SeRoeCoHe 7 as a setting for a strong—weak—electro-
magnetic unification theory (S is the 3 X 3 matrix algebra
with entries from R and each of the algebras R, C, H, and &
can be constructed from R via iteration of the Cayley—Dick-
son process). The algebra constructed is sufficiently large to
accommodate four families of quarks and leptons, neutrinos
with completely chargeless right-handed components and
Dirac masses, and groups Su(3), and Su(2).

We repeat, for emphasis, that each of the division alge-
bras C, H, and & can be constructed from the reals by iter-
ation of the Cayley-Dickson process. Kugo and Townsend '?
link the existence and properties of each of these division
algebras with the existence and properties of supersymme-
tric field theories in various space-time dimensions. An asso-
ciation of C and H with ¥ = 2 and N = 4 supersymmetry,
respectively, in two and three space-time dimensions, is also
found in the construction of supersymmetric models with
spins <} by stochastic methods.' Let D denote the dimen-
sion of space-time; D = ¢ + s, where ¢ is the time dimension.
Lukierski and Nowicki'® derive a connection between divi-
sion algebras and supersymmetry, associating R, C, H with
D =3, 4, 5, respectively (1 = 1). The paper of Kugo and
Townsend shows that spinors in space-time of dimension D
are associated for signatures —¢t=1,2,4, 8 (and ift = 0, |,
2) with the algebras R, C, H, &.

We end our current literature citations with Sudbery, '®
who shows that just as the exceptional Lie algebras can be
described in terms of the octonions, so can the two excep-
tional Lie superalgebras G (3) and F (4).

Earlier papers have detailed octonionic formulations of
field equations and quantum mechanics. Buoncristiani!’
showed that the classical Yang-Mills field equations may be
written in a simple form utilizing the split octonion algebra.
The split octonion algebra is also applied in Oliveira and
Maia'® to the study of relativistic wave equations in curved
space. Giinaydin, Piron, and Ruegg'® showed that the non-
de Sarguesian projective octonion plane of Moufang?®® can be
orthocomplemented and thus interpreted as a quantum me-
chanics. Nahm?' demonstrated that for the Yang—Mills the-
ory derived from supergravity with 11 dimensions, upon
compactification of seven dimensions to a sphere, there ex-
ists a natural octonionic generalization. A more detailed sur-
vey of the octonions is given in Sorgsepp and L6hmus.??

We will give the construction of a class of algebras, ob-
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serve that the Clifford and the Cayley-Dickson algebras are
contained in this class, and develop the mathematical prop-
erties of the algebras in that class.

Il. THE CONSTRUCTION

By a generalized quaternion algebra Q we will mean an
R-algebra with a basis {e,i/,k (= ij)] where

e is the identity,

=7y, (1a)
F=re (1b)
j= —ji=k, (Le)
Y1, Y2 = + 1. We will begin with this class of algebras that

includes H. For a detailed discussion of the quaternion alge-
bras see Ref. 23.

We define two maps on the algebra Q. The first, denoted
by o, is an automorphism of Q of period 2. That s,

(x7)" = x, (2a)

(xy)” =x7y” (2b)
for each x, y in Q. The map o is determined by

e’ =e "= —i, 7= —j k7=k (3)

The second map, denoted by *, is given by

e*=e¢, *= —i j*= —j, k*= —k, {4)

and satisfies

(x*)* =x, ()

(x*)7 = (x7)* (6)
for all x in Q.

Lety; = + 1. Weconstruct an algebra Q (y,) of dimen-

sion 8 over R having Q as a subalgebra [with the identity of
Q(v,) in Q] as follows: Q (v,) consists of all ordered pairs

g = (91,92, ¢, in O, addition and multiplication by scalars
defined componentwise, and multiplication defined by

(91,92)(9394)
= (91,95 + ¥3(Ag¥q, + (1 — A)g:99), A (4297 + 9491

+ (1 — A )g:194 + 9:457)) (7)
for all ¢; in Q@ and some 4 in R. Then ¢ = (¢,0) is an identity
element for Q (¥5), @' = [(g,0)|¢€Q } is a subalgebra of Q (v)
isomorphic to Q, v = (0,e) is an element of Q (y,) such that
v? = 3¢, and Q (y;) is the vector space direct sum
Q(v3) = @' + vQ’ of the four-dimensional vector spaces Q'

and vQ".
Lemma 1: The map o’ induced in @ {y,) by o,
91.92)° = (g7, — 43) (8)

for q,,4, in Q,, is an automorphism of period 2.
Proof: Compute each of the products ((ql,qz)(q3,q4))

and (¢,,42)° (g3-94)° and use the fact that (¢*)° = (¢°)* for all
gin Q.

Lemma 2: The map * induced in Q (7,) by *,

(q1,92)*" = (gT, — ¢2) )
for ¢,,4,in Q, commutes with ¢’. That s, (¢*')° = (¢” }*' for

each ¢ in Q (y;). Furthermore,
@*)* =gq (10)
for each g in Q ().
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Proof:
() 1 = (67, — p= )% = (x7%,°), (11)
(d)*)7 = (x* — ) = (x*37) = (x"*°).  (12)

The process can be repeated. After n — 2 steps the iter-
ated 2" -dimensional algebra will be denoted by
Q(V3¥ar-s¥n )

The algebras Q (¥,,....8,, ) are not necessarily associative.
If A = 1, we obtain the Cayley—Dickson algebras upon iter-
ation of this process (for further discussions of the algebras
arising from the Cayley—Dickson process see Refs. 24-31).
For A = 0, we derive the Clifford algebras.

lil. MATHEMATICAL PROPERTIES

We have observed that the induced map ¢’ will always
be an automorphism of period 2.
The map * in @ is an involution in  in the sense that

g*)* =g, (13)
(gp)* = p*q* (14)

for each p,q in Q. We determine necessary and sufficient
conditions that the induced map *’ be an involution in

Q¥3rees¥u)-

Lemma 3: The induced map * is an involution in Q (y5)
if and only if A = 1.

Proof: Compute the first component of each of the pro-
ducts

((91,92)(93,94))*" and (¢3,9.4)*'(g1,92)*"-
If * is an involution, we must have

(1 —2)g5*%q% = (1 — A )g5q5. (15)
If A #1, then
g3*gy = (1 — A )g95. (16}

This must be true for all ¢,,, in Q. Let ¢, = e and ¢, = &.
Then

ko* =k (17)

which is false. Hence 4 = 1.

We can rephrase Lemma 3 as

Lemma 3": The induced map *’ is an involution if and
only if Q (¥3,...,¥. ) is a Cayley-Dickson algebra.

There is, of course, the involution in the Clifford alge-
bras that Chevalley®? calls the main antiautomorphism.

There is a nondegenerate, symmetric, quadratic form g
associated with Q,

glx,y) = Xo¥o — X1 V1 — X2P2¥2 — X3V3V1 V3 (18)

where x = xge + X;7 + X, j+ X3k, y = yoe + y; i
+ o j + ysk. We can extend g to Q (y5) via

g((w,v), (x.p)) = qlux) + 73q(v.p). (19)

A first step in the systematic study of the properties of
any algebra is to determine how much associativity is pres-
ent. An R-algebra A is called power associative in case the
subalgebra R[x] generated by any element x of 4 is associ-
ative. An R-algebra 4 is power associative if and only if, for
eachx in A,
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x%x = xx* (20)
and

x2x* = x(xx?). (21)
For a proof of this see Ref. 33. All associative algebras are
power associative as are the Lie algebras, Jordan algebras,
and the Cayley-Dickson algebras.

If an algebra 4 is not power associative, it may satisfy
the weaker flexible rule

(xphx = x(px) (22)

for all x, y in 4. Note that a flexible algebra satisfies the
associativity of cubes in (20). For a nice discussion of alge-
bras satisfying this weaker form of associativity see Ref. 34.

We end with

Theorem 4: If we begin with a quaternion algebra Q and
afixed value for A, then for n >3, the following statements are
equivalent:

(i) @ (¥3,---,7 ) is flexible.

(ii) Q (¥3,-.-,¥ ) has associativity of cubes.

(iii) Q (¥3,-.-,¥, ) IS power associative.

(iv) Q (¥3-..,¥ ) is either a Cayley—Dickson algebra or a
Clifford algebra.

Proof: We show that if x’x = xx? for each x in
Q (¥3)--+¥» ), then A = 0 or A = 1. To do this we show that if
x€Q (y,) and x°x = xx* thend =0ord = 1.

Let x = (k,e)eQ (7). The first component of x’x is

(k> + 73k + 732(1 — A )k. (23)
The first component of xx is

(k? + ik + ¥32(1 — A )(1 — 24 )k. (24)
Equating (23) and (24) and simplifying, we get

(1—Ak=(1—A)1—24)k. (25)

Ifl — A4 #0,wegetA =0.If1 — A =0,weget1 = 1. Hence
the algebras that we construct are either the Cayley—Dick-
son algebras or the Clifford algebras.

Corollary 5: Q (¥,...,¥, ) is associative if and only if it is a
Clifford algebra.

IV. CONCLUSION

Each vector space may be made into one of infinitely
many algebras; these algebras may have few properties in
common. With a single vector space (physical properties de-
scribed mathematically) it is possible to define two or more
radically different algebras with products (operations or
transformations) describing different phenomena.

For a fixed value of A, the above construction, upon
iteration, gives rise to a collection of algebras of increasing
dimensions. We have shown that only for A =0orA = 1do
these algebras have any “reasonable” properties, and in
those cases we have either the Clifford algebras or the Cay-
ley-Dickson algebras.

There is another construction that lets us associate with
each Cayley~Dickson algebra a Clifford algebra. If Qis a
Cayley—Dickson algebra, there is a nondegenerate symmet-
ric quadratic form ¢ associated with the vector space Q,
which can be used to define a nondegenerate, symmetric,
bilinear form for Q. It is well known that Q has a basis
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{e,uy,uy,...,u, } where e is the identity of Q and
i, ij=12.0, (26)
=1, 27)

where a; is a nonzero scalar and f(u;,u;) = 6;a;,
ij=12,.,n.

uu; = —uu;,

uu; =ae,

(28)

Asin Lang,* we can construct a Clifford algebra for the
vector space spanned by u,,u,,...,«, (identifying the identity
of the resulting Clifford algebra with the identity of 4 ). Since
the dimension of Qis 2", the dimension of the corresponding

Clifford algebra will be 2"~ V. For n = 3, we see that @ is
an octonion algebra and the Clifford algebra is generated by
the seven elements e,,e,,...,e;. This very natural identifica-
tion of Z with a subset of the Clifford algebra 4 ®7 is exploit-
ed in Horwitz and Biedenharn.*
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In the present paper, we introduce partially coherent states for the positive discrete series
irreducible representations (1, + n/2,...,A; + n/2) of Sp(2d,R ), encountered in physical
applications. These states are characterized by both continuous and discrete labels. The latter
specify the row of the irreducible representation [A,4,.--4,] of the maximal compact subgroup
U(d ), while the former parametrize an element of the factor space Sp(2d,R )/H, where H is the
Sp(2d,R ) subgroup leaving the [A,4,---4 4] representation space invariant. We consider three
classes of partially coherent states, respectively, generalizing the Perelomov and Barut-
Girardello coherent states, as well as some recently introduced intermediate coherent states. We
prove that each family of partially coherent states forms an overcomplete set in the representation
space of {1, + n/2,...,A, + n/2), and study its generating function properties. We show that it
leads to a representation of the Sp(2d,R ) generators in the form of differential operator matrices.
Finally, we relate the latter to a boson representation, namely a generalized Dyson representation

in the cases of Perelomov and Barut-Girardello partially coherent states, and a generalized
Holstein—Primakoff representation in that of the intermediate partially coherent states.

PACS numbers: 02.20. + b, 21.60.Fw, 03.65.Fd

1. INTRODUCTION

The real symplectic group Sp(2d,R ), being the group of
linear canonical transformations in a 2d-dimensional phase
space,' plays an outstanding role in many physical problems.
It is an important component of the d-dimensional harmonic
oscillator dynamical group,’? the semidirect product group
N{(d)ASp(2d,R ), where N (d) is the d-dimensional Heisen-
berg-Weyl group.® Then the widespread use of the harmonic
approximation in physical problems accounts for many of
the Sp(2d,R ) occurrences.* In addition, the complementar-
ity relationship between O(n) and Sp(2d,R )"” explains the
appearance of the latter in connection with the O(n) symme-
try in various fields, such as O(n)-invariant theories,® and
collective models.®'® The Sp(2d,R ) irreducible representa-
tions (irreps) encountered in all those physical applications
are positive discrete series,'®?° characterized by their lowest
weight (1, + n/2,..,A, + n/2), where [4,4,-4,] is a par-
tition, and # is an integer greater than or equal to 2d. In the
present paper, we shall therefore restrict ourselves to such
irreps.

It is well known that Glauber’s standard coherent states
(CS),%! i.e., the CS associated with the Heisenberg-Weyl
group N (1), can be generalized to other Lie groups in various
ways. Their most commonly used generalization, due to Per-
elomov,??is applicable to any Lie group. Oppositely, the ear-
lier generalization, due to Barut and Girardello, is not ap-
plicable to compact groups. It was actually proposed by
these authors only for SO(2,1), and its locally isomorphic
groups SU(1,1) S1(2,R ), and Sp(2,R ). In a recent paper,'” we
extended their work to the irreps {(1 + n/2)?) of Sp(2d,R ),
and also introduced a third class of CS, intermediate
between the Perelomov and Barut—Girardello ones.

The purpose of the present paper is to extend these three

% Maitre de recherches F.N.R.S.
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classes of generalized CS to the discrete series irreps (A,
+ n/2,...,A, + n/2) of Sp(2d,R ). In trying to generalize the
Barut—Girardello CS to such irreps, we have been led to in-
troduce the concept of partially coherent states (PCS). Con-
trary to the CS, which are specified by some continuous
(complex) indices, the PCS are characterized by a set of con-
tinuous (complex) indices as well as by some discrete labels.
The latter specify the row of the irrep [A,4,-4,] of the
maximal compact subgroup U(d ), while the former parame-
trize an element of the factor space Sp(2d,R )/H, where H is
the Sp(2d,R ) subgroup leaving the irrep [4,4,-+4, ] repre-
sentation space invariant.

In addition to providing an appropriate generalization
of Barut-Girardello CS, the PCS have some remarkable
properties, which by themselves account for their study in-
terest, and will be reviewed in the present paper. Future de-
velopments in this field will include the study of possible
connections with other works,”* detailed applications to
some physical problems, and an extension of the PCS con-
cept to other physically relevant groups.

This paper is organized as follows. In Sec. II, our nota-
tion is summarized and some properties of the Sp(24,R ) dis-
crete series irreps listed. In Secs. III--V, three classes of PCS
are defined and their main properties reviewed. They are
respectively termed Perelomov, Barut-Girardello, and in-
termediate PCS. In Sec. VI, the PCS representations of the
Sp(2d,R ) generators are studied. Finally, in Sec. VII, some
relations between PCS and boson representations are estab-
lished.

Il. THE Sp(24,7) IRREPS (A, + N/2,uiq + /2>

The positive discrete series irreps (4, +n/2,
A +n/2)of Sp{2d,R )canberealizedinaspace of boson
states built from dn boson creation operators 7,;, { = 1,...,d,
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s = 1,...,n, provided n is greater than or equal to 2d (see Ref.
1). In terms of these boson creation operators and the corre-
sponding annihilation operators £, = (17,)", the Sp(2d,R )
generators are then expressed as

Dy=D}= 3 m.m, I1<i<j<d, (2.1a)
=
D,=D,= 3 &6, I<i<i<d, (2.1b)
&,
and
Ey= 5 3 b +6m)
=C, + %5,,., ij=1,..d, (2.1c)
where
Cy= 3 mi 22)

They satisfy the following commutation relations:
[E Ekl] = 5jkEu - 6i1Ekj’

ij)
[Eij’D Zl] = 5jkD;?} + jID :Tk’

[E;sDu] = —b6uDy — 64Dy, (2.3)
[P}, D],] = [DyDu] =0,

Ij!
[D DII] = 5ikE1j + 61’1Ekj + 5jkE1i + 5j1Ekn

from which we note that the operators C;, satisfying the

same commutation relations as the operators E;;, generate
the maximal compact subgroup U(d ) of Sp(24,R ).

A discrete basis of the irrep (1, + n/2,...,A, + n/2) re-
presentation space can be easily built from the lowest weight
state |(4 )i, ) - By definition, the latter satisfies the following

equations:

ij)

Dij I(/l )min ) = O’ l<.]1 (2.48)
El'j I(’l )min) = 0’ i>j, (2.4b)
Ei| A )min) = A +1/2)|A)min)s i=1,..d.  (2.40)

From Egs. (2.1c), (2.4b), and (2.4c), we note that it is the
lowest weight state of an irrep [4,4,-4,] of U(d), so it can
be characterized by the corresponding Gel’fand®® pattern
(A‘ )min .

The whole representation space can be generated from
(A Jmin > by applying polynomials in the D}, E,, and D,
generators. By using the commutation relations(2.3), it is al-
ways possible to write such polynomials in normal form, i.e.,
as

P(D})P'(E;)P"(Dy), (2.5)

where P, P', and P " are some polynomials in the indicated
operators. As a consequence of Eq. (2.4a), P"(D;) gives rise
to a constant, so that we may neglect it in Eq. (2.5). More-
over, the action of all the polynomials P'(E;) upon |(4 ), )
generates the representation space of the U(d) irrep
[AAy+4,], whose dimension will be denoted by A, and
whose basis states |(4 )) can be characterized by the Gel’fand
patterns (4 ). We can therefore obtain any state in the repre-
sentation space of (1, + n/2,...,A, + n/2) by linearly com-
bining the states
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IN;(2)) = Fu(DD)f(2)), (2.6)
where D denotes the d X d matrix ||D }||, Fx(D') is defined
by

Fu(DY) = JTWV)2[(1 +6,)712D} 1™, (2.7)
{3}

the quantum numbers N, 1<i<j<d, run over all non-nega-
tive integers, and (4) over all Gel'fand patterns of
[AdrAq].

We conclude that the states |N;(4 )) form a discrete basis
of the irrep (1, + n/2,..,A, + n/2) representation space.
Although they are characterized by a given weight in U(d ),
they do not belong to a definite U(d ) irrep. In Ref. 26, we did
however show how to go from the states |N;(4 )) to states
characterized by definite irreps of U(d ) and of its subgroups
U(d — 1),U(d — 2),...,U(1). Therefore, for simplicity’s sake,
we may here restrict ourselves to the basis states |[N;(4)).

The states [N;(4 )} do not form an orthonormal set. Let
M be their overlap matrix, i.e., the matrix whose elements
are

Myunmay = (NSA )N ). (2.8)

We note that since

Myygnay =0 if Y (N — Ny)#0, (2.9)
<

the infinite-dimensional matrix M is block diagonal, and the
submatrices on the diagonal are finite dimensional. We may
therefore consider its inverse M, and define the dual basis
states (for which we use a round bracket instead of an angu-
lar one) by the usual relation

'NQM N = z |N’§(’1 ’)>(M_1)N'(}. )N(A)*

N
The basis states |[N;(4 )} and their dual ones |N;(4 )) form a
biorthogonal system, i.e.,

(NSNS ) = Onewbiana)s

where

6N',N - HaN'}'NU.
i<y

They give rise to the following unity resolution relation:

>IN N ) =1,

N(4)
where I denotes the unit operator in the representation space
of (A, +n/2,..,A, +n/2).

In addition to the two discrete, nonorthogonal basis
IN;(4 )} and |N;{4)), it is also possible to consider a discrete
intermediate orthogonal basis, obtained from either of the
former by the standard orthonormalization procedure. Its
elements (for which we use a curly bracket instead of an
angular one) are defined by

N%'j INI;M ‘»(M_UZ)N'M LN}

(2.10)

(2.11)

(2.12)

(2.13)

IN;(4 )}

= 2 ‘N’§('{ I))(MI/Z)N'(}.’),NM)’

N{4’)

(2.14)

where M'/2 denotes the square root of the Hermitian, posi-
tive definite matrix M, and M ~'/2 the inverse of M'/2. The
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states |N;(4 )} satisfy the two following relations:

(NSANNA )} = S nBia s (2.15)

and

S NN ) =L

N4}

For subsequent purposes, it is convenient to introduce a
matrix notation to denote either of the three discrete basis. If
we enumerate the Gel'fand patterns (1), associated with
[AA2+44],inagiven order (4 ),,(4 )2,...,(4 ) 5 , then the basis
states corresponding to given values of N can be arranged in
arow vector, and the corresponding bras in a column vector.
For the basis |N;(4 )}, for instance, we obtain in this way

(2.16)

IND) = (NS ) D INGfA - INGtA ), ) 217
and
(N;(4 ),
I e 218
(N;(;i Jal

Row vectors ||N)), [N} }, and column vectors ((N]|, { { N} are
similarly defined for the basis |N;{4 )) and |N;(4 )}, respective-
ly. In this matrix notation, Egs. (2.11), (2.13), (2.15), and
(2.16) can be rewritten as

(N'|IN)) = {{N'[[N}} = 8L, (2.19)

and

3 ININ] = 3 INJ}(IN] =, 220
where I denotes the A X A unit matrix.

In the next three sections, we proceed to introduce three
classes of PCS, which provide us with three alternative bases
for the representation space of (1, + n/2,...,A, + n/2), and
can each be associated with one of the discrete bases defined
in the present section. We start with Perelomov PCS in the
next section.

{Il. PERELOMOV PARTIALLY COHERENT STATES

Following Perelomov,* generalized CS can be defined
for the irrep (1, + n/2,...,A4; + n/2) of Sp(2d,R ) by acting
with the operator representing an arbitrary group element
upon a fixed vector |t/,) of the representation space. They
are determined by the points of the coset space Sp(24,R )/H,
where H is the stationary subgroup of |,,). For the reference
state |¢,), it is interesting to choose the irrep lowest weight
state |(A )nin?- When A4,,4,,...,4, are all different, it is clear
from Eq. (2.4) that the stationary subgroup H of |(4 ), ) 18
generated by the operators D, E,;, and E;; (i > j). Perelomov
CS can then be written as

exp [Z (14+68,) 'utD} + Z E,]E,,] A )min 0

i Py
in terms of the complex variables u; (i<j), and #; (i <)),
which completely specify them. When some of the A,’s are
equal, the algebra of H also includes some raising generators
E; (i<j). In the extreme case where all ,’s are equal, it
contains all the generators D; and E;, so that Perelomov CS
can then be expressed as!’

ijr

(3.1a)

2356 J. Math. Phys.,, Vol. 25, No. 8, August 1984

W =exp S (148,750} | 1))
i<y

= exp(4 tr w*D")[(4 )y ), (3.1b)

where u denotes the d Xd symmetrical complex matrix,
whose elements are u; = u;,.

Let us now introduce the concept of PCS by slightly
modifying definition (3.1). Instead of a single reference state
|(A }min)» We use a whole subspace of the irrep (A,
+ n/2,..,A, + n/2) representation space, namely the repre-
sentation space of the U(d ) subgroup irrep [4,4,-+4,]. In
close analogy with Eq. (3.1), we then act upon the basis states
[(1)> of this subspace with the elements of the coset space
Sp(24,R )/H, where H is now the Sp(2d,R ) subgroup leaving
the subspace invariant. Since H is generated by the operators
D; and E; (whatever the values of 4,,4,,...,4, may be), the
PCS are defined by the following relation:

;(4)) = exp(i tr u*D)|(4)), (3.2)

where uis again a d X d symmetrical complex matrix. In the
following, we shall refer to the states |u;(4)) as Perelomov
PCS (PPCS).

From definition (3.2), it is clear that the PPCS are both
labeled by the continuous indices u; = u;;, and the discrete
indices (4 ). The latter can only take a finite number of values,
equal to the dimension A of the U(d ) irrep [4,4,4,]. In
analogy with Eqgs. (2.17) and (2.18), the PPCS can be ar-

ranged in a row vector

ud) = (lw(d ) ) fwsld )o) - ws(d )4 )), (3.3)
and the corresponding bras in a column vector
({4 )y
((uf = <u;(;/1 h (3.4)
(A )4 |
We note that when A, = 4, = .. = 4,4, A is equal to one, so

that the PPCS then reduce to the Perelomov CS. For arbi-
trary 4, values, the PPCS can therefore be considered as a
generalization of the Perelomov CS corresponding to all 4,’s
equal.

Let us now review some properties of the PPCS. From
their definition, it is clear that they are generating functions
for the discrete basis states |N;(4 )), defined in Eq. (2.6). By
expanding the exponential in Eq. (3.2), we indeed obtain

lwid)) = 3 Fu@¥IN;(d)), (3.5a)

or

0}y = 3 Fuw)N)), (3.5)
N

where the summation over ¥,,,N,,,...,/N,,; runs over all non-
negative integers, and Fy (u*) is defined by Eq. (2.7) with D'
replaced by u*. This property largely accounts for the useful-
ness of PPCS for practical purposes. It should be noted that,
in contrast, no such simple property is available for the Pere-
lomov CS, except in the case where 4, =4, = - =A4,.

Let us next show that the PPCS form a nonorthogonal
family of states. The overlap of two PPCS,
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(4 )|wd )

= ((4")|exp(} tr w'D)exp(} tr u*D')|(1 )), (3.6)
can be calculated by rewriting the operator on the right-hand
side in normally ordered form,
exp(} tr u'D)exp(} tr u*D')

= exp(} tr aD")exp(tr bE)exp(} tr cD), (3.7)
and by using Eq. (2.4a) with |(4 ), ) replaced by |(4}). In
Appendix A, it is shown that the matrices a, b, and ¢, appear-

ing on the right-hand side of Eq. (3.7), are given in terms of u’
and u* by the following relations:

a = u¥{I — v'u¥)"" = (I — u*uw)~'u*, (3.8a)

expb= (I —u'u*)~}, (3.8b)
and

c=(I—vwu*) "o =u(l—u*u)"". (3.8¢)

Equation (3.6) is transformed into
(w54 ")|w(4 )
= (4 ’)|exp(tr bE)|(4))
= exp((n/2)tr b){(A ')|exp(tr bC}|(4)), (3.9)

where in the last step we used Eq. (2.1c).

Since the operator exp(tr bC) belongs to the Gl(d,C ) sub-
group of Sp(2d,C ), and the Gel'fand states |(4)) and |(4 ")),
associated with theirrep [4,4,-4, ] of U(d ), transform un-
der the same irrep of Gl(d,C), the matrix element
{(A ")|exp(tr BC)|(1)) is an element of a Gl(d,C) represen-
tation matrix corresponding to [A,4,+4, ]

((A")|expltr BO)|(2 )y = D K2 (exp b). (3.10)

Here b stands for the transpose of b. From Eq. (3.10) and the
relation

exp(tr b) = det(exp b) = det(exp b), (3.11)

it results that the overlap (3.9) only depends upon the matrix
exp b, or equivalently, using Eq. (3.8b), upon the matrix
I — u*v’. Its final form is given by

(w54 ) |u;(4 ) = [det(I — u*w’)} ™2

[j,l...,{d]

XD gy ([T —w*u'] 7). (3.12a)
We note that, as expected, the overlap (3.12a) reduces for

A, =4, = - =4, to the overlap of two Perelomov CS."” In
matrix notation, Eq. (3.12a) can be written as

ﬁ(u',u") = ((u'||lu*))
— [det(] _ u‘ul)] - n/ZD[i-,-../ld]([I _ u*ul] —l),
(3.12b)

where

D! *lig) = | {5 gl (3.13)
The nonorthogonal family of PPCS can be used as a
basis in the representation space of the irrep (4,
+n/2,..,A, + n/2). To prove this property, it remains to
show that the set is complete (as a matter of fact, it is over-
complete as proved hereafter). For such a purpose, we have
to demonstrate that in the irrep (1, + n/2,....A; + n/2) re-
presentation space it gives rise to a unity resolution relation.
The latter takes a rather unusual form
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S [ lh 1010 ) =1 (3.14a)
(ANA)
or

f [[u) ) d{u){<ul| = I, (3.14b)

in the sense that it contains a A XA matrix measure

do(u) = ||d6; 4, ()] (3.15)
This measure is given by

dé{u) = flu,u*)du du*, (3.16)
where

du du* = HdRe u; dImuy, (3.17)
and Q

fuu*) =4 [det(T — u*u)] ~¢~ 'K~ Yuu*),  (3.18a)
or

Fioa, (wu*) =4 [det(T — u*n)]»2— 2!

XD [ — utu). (3.18b)

In Eq. (3.14), the integration takes place over the origin-cen-
tered unit ball. In Eq. (3.18), 4 is a normalization constant,
determined by the condition

A _IJtrd&(u)z 1, (3.19)
ie.,
A-t=4"" fdudu*[det(l— u*y)]2 -4t
X x4 — utu), (3.20)

where y [’1""4"](1 — u*u’) is the character of I — u*u’ in the
irrep [A,+4,] of G1(d,C).

The proof of Eq. (3.14) is detailed in Appendix B. It
consists in showing that the operator on the left-hand side of
this equation commutes with all the Sp{2d,R ) generators
when dé(u) is given by Egs. (3.16)—(3.18). From the irreduci-
bility of the representation (1, + n/2,...,A, +n/2), and
Schur’s lemma, it then follows that the operator is a multiple
of the unit operator in the representation space of (4,

+n/2,...,A, + n/2). The multiplicative congtant can be set
to 1 by adjusting the normalization constant 4 in accordance
with Eq. (3.19).

In the PPCS representation, any state |¢) in the repre-
sentation space of (1, + n/2,...,A4, + n/2) is represented by
a column vector

(A )|

(w(d ) [¢)

((ully) = (3.21)

(w(d ), )
From Eq. (3.14), its expansion in terms of PPCS is given by

0y = [ Inastu)calp.

The PPCS overlap matrix ]ﬁ(u’,u*) therefore acts as a matrix
reproducing kernel since

(3.22)
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((ul|g) = f K(u,u)do(u’){ (w]j). (3.23)

It can also be easily seen that the PPCS are not linearly
independent, hence they form an overcomplete set, as from
Eq. (3.22)

) = [ ) dotu)Riw'u).

It should therefore be possible to extract complete subsets
from the set of PPCS.

In the next section, we shall introduce a second class of
PCS, generalizing the Barut-Girardello CS,"”** and asso-
ciated with the discrete dual basis states |N;(4 ).

(3.24)

IV. BARUT-GIRARDELLO PARTIALLY COHERENT
STATES

Barut-Girardello CS for the irrep ((A + n/2)%) of
Sp(2d,R ) are defined as the common eigenstates |w) of the set
of commuting, non-Hermitian operators D;;, 1<i<j<d, cor-
responding to the complex eigenvalues w},

1<igj<d. (4.1)

Herewdenotesthed X dsymmetrical complex matrix whose
elements are w; = w;. As shown in Ref. 17, such states do
exist for any complex values of w;;, and are unique up to a
normalization factor.

Let us now turn to an arbitrary irrep {4,
+ n/2,.., A, + n/2), and ask whether the system of equa-
tions (4.1) has a solution in this case. To answer this question,
let us consider the representation of both sides of Eq. (4.1) in
the PPCS basis |u;(1 ')},

(w(1 )| Dy |w) = wiuy(A )|w), 1<igj<d. (4.2)
From definition (3.2) of PPCS, the left-hand side of Eq. (4.2)
can be transformed as follows:

({4 ")|D;|w) = {(A")|exp(} tr uD)D;; |w)

=4, (4 )|exp(4 tr uD}|w), (4.3)
where, in the last step, we have introduced the differential
operator

4.4)

d
4, =(1+6; .
o=l s) Ay
Equation (4.2)is therefore equivalent to the following system
of v =d (d + 1)/2independent first-order partial differential
equations for (u;(4 ')|w),

4, (A )|w) = wi(ud)|w), 1<ig/<d. (4.5)
In addition to the trivial solution

(u;(4)lw) =0, (4.6)
this system also admits the solution

({4 )|w) = G, (W*)exp(} tr uw*), {4.7)

where G ; ,(w*} is an arbitrary, nonidentically zero function
in w*.

When (4 'Jrunsovertheset(4 );,(4 ),,-..,(4 ), , weobtain A
systems (4.5), whose collection is equivalent to Eq. (4.1).
Each one of them admits both solutions (4.6) and (4.7). If we
choose the nontrivial solution for one system, and the trivial
solution for the remaining ones, then we get A independent
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solutions for the collection of A systems, according to which
of the latter gives rise to the nontrivial solution. These A
independent solutions may be specified by the Gel'fand pat-
tern {4 ) associated with the nontrivial solution, and denoted
by |w;(4 )). Equation (4.1) then becomes

Dylwid ) =uFlwid ), 1<igj<d, (4.8)
where
(w4 )wid ) = 5(/1 WA) G(x)(w*)exP(% tr uw¥). (4.9)

It remains to choose the normalization of |w;(4 }), and
thereby the value of the so far arbitrary function G, (w*).
Let us impose the following condition:

(A Nw;(d)) = ‘S(/l AT {4.10)
Since the PPCS |0;(4 ')), whose parameters u; are all equal to

zero, reduce to the Gel'fand states |(1')) of the irrep
[A1A2+4,], Eq. (4.10) imposes that for any (4 ),

G, (w¥) =1, (4.11)
so that Eq. (4.9) becomes
(w4 )| W;(A ) = 8,51, €XP(} tr uw*). (4.12)

We have therefore proved that for any complex values
of the set of parameters w,; = w;, the system of equations
(4.1) has [up to some normalization factors we choose in
accordance with Eq. (4.10)] A independent solutions, which
can be written in the PPCS basis as

wiid) = > f exp(} tr uw*)
@

X (A ")y, (), {4.13)

by making use of Eq. (3.14a). The states |w;(1 )), being both
labeled by the continuous indices w; = wj;, and the discrete
indices (4 ), are PCS. In the following, they will be referred to
as Barut-Girardello PCS {(BGPCS).

Before proceeding, it is worth mentioning that, in con-
trast with Perelomov CS, Barut-Girardello CS cannot be
defined for an irrep (1, + n/2,...,A, + n/2) for which all
A;’s are not equal. To completely specify them, we should
haveindeed to diagonalize some extra Sp(2d,R ) generators in
addition to the set of operators D,;. However no generator E;;
or D} commutes with the whole set of operators D;;. The
only way to get rid of this difficulty is to go from CS to PCS,
since in the latter case we only need the set of operators D,;.

For the BGPCS, we may introduce a matrix notation
similar to that used for the PPCS. Let us denote by ||w)) the
row vector

Iw)) = (|w5(4 )1)[Ws(A Jo)-|Ws(A )4 ), (4.14)
and by ((w|| the Hermitian conjugate column vector
((w]| = [llw)]". (4.15)

From Eq. {4.12), we obtain that the overlap matrix of the
PPCS with the BGPCS,

((u||w)) = exp(} tr uw*}I, (4.12')

is a multiple of the A X A unit matrix I. The multiplicative
factor exp(} tr uw*)is the reproducing kernel of a Bargmann
Hilbert space?’ of analytic functions in the v complex varia-
bles, (1 + ;)™ "2 u,;, 1<i<j<d, since it can be rewritten as
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expl(} tr uw*) = exp IE [(146,)"u;]
iJ

X [(1+8,) 2wy } (4.16)

We also note that, in matrix notation, Eq. (4.13) assumes the
following form:

||w)) = J-exp(% tr uw*)||u) ) dtu).

The generating function properties of the BGPCS can
be easily established by starting from the relation

[[w)) = ; IND<CN]Iw)),

resulting from Eq. (2.20). On the right-hand side of Eq.
(4.17), ({N/||w)) denotes the A XA matrix, whose elements
are given by

(4.13)

(4.17)

(N;(2 )| w5{A ) = (4 ") Fx (D) w;(4 ). (4.18)
By using Eqgs. {(4.8) and {4.10}, it can be written as
((NJ|w)) = Fy (w*)L, (4.19)

where Fy (w*) is defined by Eq. (2.7) with D' replaced by w*.
Equation (4.17) therefore assumes the form

fiw)) = ; F(w*}|IN)), (4.20)
from which it results that the BGPCS are generating func-
tions for the discrete dual basis states |N;(4 )), with the same
expansion coefficients as those appearing in the expansion
(3.5) of the PPCS in terms of the discrete basis states |N;(4 )).

Equations (4.13) and (4.20), respectively, express the
BGPCS as an expansion in terms of PPCS or discrete dual
basis states. We may also ask for an expansion of the BGPCS
in terms of the discrete basis states |N;(4 )}, since this would
give us their explicit form in terms of the D |, generators, i.e.,
the analog of Eq. (3.2) for the PPCS. In Ref. 17, an equivalent
question was considered for the Barut-Girardello CS asso-
ciated with the irrep ((A + n/2)?). Since its solution was
rather tedious, we shall omit it in the present case, and re-
strict ourselves to pointing out an important relationship
between the BGPCS explicit form and their overlap matrix.

From the discussion following Eq. {2.5), it results that
the BGPCS can be written as

W) = AE)KM'M)(D*,W‘)M )8 (4.21)

-

where K ; ,,(D',w*) is some analytic function in the D},
generators. The overlap of two BGPCS is then given by

(w54 )| w;(4 )
= ,12, (W4 ") K 1 oy (DT, W%)] (2 7).
&
By using Eqgs. (4.8) and (4.10), it can be transformed as fol-
lows:
(W54 )| W54 ) = Ky ) (W, W*). (4.23a)

We conclude that the same matrix K = |[K ., || gives us
both the BGPCS explicit form (4.21) and their overlap ma-
trix

(4.22)
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(w'||w)) = K(w',w*). (4.23b)

The family of BGPCS is a complete set in the represen-
tation space of the irrep (4, + n/2,...,A, + n/2), and may
therefore be used as a basis in this space. As usual, the proof
of this property is based upon that of a unity resolution rela-
tion. In Appendix C, we demonstrate that the latter does
exist and has a form similar to Eq. (3.14). In other words, it is
possible to find a A XA matrix measure

do(w) = [|day; ) (w)|| = fiw,w*)dw dw*, (4.24)
such that
f |w))do|w)((w|| =7, (4.25)

where the integration over each variable w;;, 1<i<j<d, takes
place over the whole complex plane.

To prove Eq. (4.25) in Appendix C, we realize the repre-
sentation space of (1, + n/2,...A, + n/2) asasubspace of a
Bargmann Hilbert space of analytic functions.”” The mea-
sure do(w) then directly derives from Bargmann measure by
carrying out some appropriate integrations. Although this
procedure enables us to show the existence of do{w), it is not
suited for deriving its explicit form. In Ref. 17, we presented
an alternative method to calculate the measure for the
Barut-Girardello CS associated with theirrep {((1 + n/2)¢).
Its extension to the case of BGPCS would enable us to calcu-
late the weight functionsf;; ., (w,w*). It will however not be
considered in the present paper. The lack of explicit forms
for the BGPCS and for their measure is indeed irrelevant to
the most interesting application of BGPCS, namely the dis-
crete basis state representation, which we shall now proceed
to discuss.

As in the PPCS representation, any state |¢) in the re-
presentation space of {1, + n/2,...,A, + n/2) is represented
by a column vector ((w||1) in the BGPCS representation. Its
expansion in terms of BGPCS is given by a relation similar to
Eq. (3.22),

9= [ Iwpdotw)wl).
When |¢) is adiscrete basis state |N;(4 )), it results from Eqs.
(4.8) and (4.10) that

WA )N;(A ) = 6(/1’)(/1)FN (w). (4.27)
The BGPCS representation of |N;{4 )) is therefore a column

vector with zeros everywhere, except in the row labeled by
(A ) where we have the function Fy (w),

0

‘j,

(4.26)

F(w)

(WlIN;(A )) = 0 (4.28)

0
This simple result should be contrasted with the correspond-
ing relation for ((u||N;(4)), which makes use of the un-
known discrete basis overlap matrix M.
We conclude this section by pointing out the existence
of relations similar to Egs. (3.23) and (3.24), namely
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(wllv) = f K(w,w')dotw)(w]| ), (4.29)

and

= [ Iw ot K . (4.30)
They mean that the overlap matrix K(w',w*), defined in Eq.
(4.23b), acts as a reproducing kernel, and that the BGPCS
are linearly dependent, hence form an overcomplete set.

In the next section, we proceed to introduce a third class
of PCS, associated with the discrete intermediate orthogonal
basis states |N;(4)}.

V. INTERMEDIATE PARTIALLY COHERENT STATES

In Egs. (3.5) and (4.20), we saw that the PPCS and the
BGPCS are, respectively, generating functions for the dis-
crete basis states |N;(4 )) and their dual states |N;(4 )), with
the same expansion coefficients Fy . If we now consider the
same type of expansions with |N;(4 }) or |N;(4 )) replaced by
the intermediate orthogonal basis states |N;(4 }}, defined in
Eq. (2.14), we obtain new states

vd)} = ;FN(V*HN;(/{)}’ (5.1a)

still characterized by a d Xd symmetrical complex matrix
v = ||lv; ||, and a Gel'fand pattern (4 ) of the irrep [A,4,---4,].
Hence they form a third class of PCS, that we shall cail inter-
mediate PCS (IPCS). As the other PCS, they can be arranged
in a row vector, that we shall denote by ||v}}. Definition
(5.1a) can therefore be rewritten as

lvi} = gFN(V*)”N”'

We now proceed to review some properties of the IPCS.
From definition (5.1), it results that the IPCS overlap
matrix,

K(v,v*) = {{v]v} ], (5.2)

is given by

K(v,v) = [; A1

(5.1b)

= exp [2 [(1+8;) "

X [(1+68;)" "%k ]11, (5.3)
or, using Eq. (4.16), by
K(v,v*) = exp(} tr v'v¥)L. (5.4)

It is therefore a multiple of the A X A unit matrix, the multi-
plicative factor being the reproducing kernel of a Bargmann
Hilbert space of analytic functions in the v complex variables
(14 68;)~ "% v,, 1<i<j<d. By comparing Eq. (5.4) with Eq.
(4.12’), we also obtain the following relation:

{VIIv}} = ((V[Iv). (5.5)

It is now trivial to show that the set of states |v;(1 )} isa
basis for the representation space of the irrep (4,

+ n/2,..,A, + n/2). For such purpose, we shall prove that
they give rise to the following unity resolution relation:
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;f V) dat) (v ) = I, (5.6a)
or

f IV} ) 9] = I, (5.6)
where
Qulv) = dulv)l, dulv) = [[duf(1 46,770, ], (5]

and duf(1 4 (S,.j)"” *v;] is the standard Bargmann mea-
sure”®

du(z)=m""exp{—zz*)d Rezd Im z,

(5.8)
corresponding to z = (1 + &, )"”2 . In Eq. (5.6), the inte-
gration over each variable (1 + 5,])_ "2y, takes place over
the whole complex plane. Let us multiply both sides of Eq.
(5.6b) from the left by the column vector { {N’||, and from the
right by the row vector ||N}}. By using the relation
{{VIIN}] = Fx (VL (5.9)
resulting from Egs. {5.1b) and (2.19), we obtain the equation

[ Ay (iutmam] 1=,

whose validity for any N and N’ will now be proved, thereby
showing that of Eq. (5.6).
To this end, let us consider the boson states'®

(5.10)

- Ny
IN] = H (V1) ™" *(a})™]0]
built from v 1ndependent boson creation operators a al;,
i,j=1,..,d, acting upon the vacuum state |0]. The boson
creation operators satisfy the following commutation rel-
tions with their corresponding annihilation operators a,
g aji’

[aij:aL] =(1+ 5:‘,’)_1(5,'1(6]'1 + 8.8 ). (5.12)

In Eq. (5.11}, we havealso introduced non-normalized boson
creation operators @}, = a@j; = (1 + ;)" a};, whose commu-
tation relations with thell’ correspondlng annihilation opera-

tors @; = @; assume the simpler form
[@;.al,] =646, + 846, (5.13)
In Bargmann representation, the operators a and a; are,

respectively, represented by the complex varlables vy and the
corresponding differential operators

= Fn(@(0], (5.11)

a4, =146, (5.14)
v v,
which satisfy the same commutation relations
[Au !Ukl] _61k 1+5115 (515)

as the operators themselves. The function Fy (v) is therefore
the Bargmann representation of the boson state |N]. Hence,
when disregarding the unit matrix, Eq. (5.10) just expresses
the orthonormality of boson states in Bargmann representa-
tion, and is therefore valid for any N and N'. This completes
the proof of Eq. (5.6).

Asin the other PCS representations, any state |¢) in the
representation space of (1, + n/2,..,A, +n/2) is repre-
sented by a column vector { {v||#) in the IPCS representa-
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tion. Relations similar to Eqgs. (3.22)—(3.24), and (4.26), (4.29),
and (4.30), can be easily established:

) = jduw)uvm{vnw, (5.16)
(V1) = j du(v')exply tr v ){ (V' [[9, (5.17)
(5.18)

V1) = [ dutviexptservvmvy).

Note the simple form of these equations, coming from the
fact that in the present case both the overlap and measure
matrices are multiples of the unit matrix.

In conclusion, we have shown in this section that the
IPCS representation of Sp(2d,R ) shares many properties
with Bargmann representation of boson states. Before dis-
cussing this point in more detail, we proceed to study the
PCS representations of the Sp(2d,R ) generators in the next
section.

VL. PARTIALLY COHERENT STATE
REPRESENTATIONS OF THE Sp(24,A) GENERATORS

Let X denote any operator acting in the representation
space of the irrep (A, + n/2,....,A; + n/2). When it is ap-
plied to an arbitrary vector |¢) of this space, it gives rise to a
new vector X |¢), whose representation is a column vector in
any of the PCS representations discussed in the three preced-
ing sections. In the PPCS representation, for instance, X |i)
is represented by {{u||X |¢). This column vector can be ex-
pressed in terms of the column vector {(u||¢), representing
|#, by acting upgn the latter witha A X A matrix X of differ-
ential operators X4, ; 4, i.€.,

(Qu|lX [¥) = X ((ull), (6.1a)

or

(W)X [¢) = %i’m,m<u;(/1 ). (6.1b)

The matrix X is therefore the representation of X in the
PPCS basis. In the same way, let us denote by X and X the
matrix representation of X in the BGPCS and IPCS basis,
respectively. They satisfy the following relations:

(WX [¢) = X((wl|¢), (6.2)

and

HYIIX [ = X{{v][#). (6.3)

We now proceed to derive the matrix representations of
the Sp(24,R ) generators in the PPCS and BGPCS basis.
Starting with the former, we first note that the representa-
tion of D; can be directly obtained from Eq. (4.3) by replac-
ing there |w) by |#). It is given by

D,=4,1 (6.4)
where A, has been defined in Eq. (4.4). To obtain the repre-

sentation of D} ¥ and E,;, we proceed as in Ref. 17, and start
from the 1dent1ty

(w4 )X [)
= ((4)|[exp(} tr uD).X exp(
X exp(} tr uD)|¢),

i

—1truD)]
(6.5)
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where on the right-hand side we apply Baker—Campbell-
Hausdorff formula

exp(Y )X exp( — Y)

=X+ i (M)~ Y[ Y [ VX 1110,

m=1

for Y =1 truD.
For the representation of E;,

following relation:
(W) E; ) = ((1)|[Cy + (uD + (n/2)1);]

Xexp(l tr uD)|¢)

= (A )I[Cy + (A, + (n/2)1);]

X exp(} tr uD)|¢), (6.7)
where in the last step we used Eq. (4.3) again. The U(d ) gener-
ator C;; transforms the bra ((4 )| into a linear combination of

bras ((4 )|, while the operator (uA, + (n/2)I); leaves it in-
variant. Equation (6.7) therefore becomes

(wid ) Ey )
= > [{ANC 1A
2"

+ (ud, + (n/2)1);81,1 ] {w(A ") ¥). (6.8)
Let us denote by c ; the A X A matrix representing C;; in the
U(d)irrep [A,4,..4,], i€,

Gy = IKIC 1A D - (6.9)
This is a scalar matrix, entirely determined by the chosen
Sp(2d,R ) irrep. By comparing Eq. (6.8) with Eq. (6.1}, we
conclude that the matrix E; representing E;; in the PPCS
basis is given by

(6.6)

we get in this way the

B, =C, + (n/2)8,1, (6.4)
in terms of the matrix
C; =€, + (uA,),L, (6.10)

representing C;. For the representation of D}, asimilar cal-
culation, detailed in Appendix D, leads to the following re-
sult:

D:S = 2 ((f:ikukj + uikéjk)"" [(wA, +n—d—lju],l
%
(6.4")

Equations (6.4), (6.4'), and (6.4") can be rewritten in a
more compact form by introducing the following notations.
Let JD’r ID ]E C and C denote the d ><d matnces, whose
elements are the A XA matrices ]D,’;, D,j, IE,I, C,I, and C,J,
respectively (hence they are dA X dA matrices), and let C be
the transpose of C when considered asad X d matrix, i.e., G;

= C;. Then we obtain the following result:

D'=Cu+uC+ (A, + 7 —d — lul, (6.11a)
D=A,L (6.11b)
E=C+ (n/20, C=C+uA,lL (6.11c)

where matrices such as A, I must be interpreted as the Kron-
ecker productofad Xd matrixAandaA XA matrix 1. Note
that Eq. (6.11a) can be put into the more symmetrical form

D' ={C+4i[uA, +(n—d— DI]I}u

+u{C + ifua, + nDI}, (6.12)
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by using the relation

Suwpd,, = Y4, u,—d+1)5,, (6.13)
7 7

coming from the commutation relation
[A“t}’ukl ] =848y + 840y (6.14)

We now turn to the matrix representation of the
Sp(2d,R ) generators in the BGPCS basis. From the definition
(4.8) of the latter, and the Hermiticity properties of the
Sp(2d,R ) generators, we immediately obtain the representa-
tion of D J; in the form

D} = w1 (6.15)

To calculate the representation of the remaining generators,
we take advantage of the facts that in Eq. (6.2) we may take a
PPCS for [¢), and that we already know the representation
of the generators in the PPCS basis.

For the representation of E,, for instance, we start from
the relation

i

(W )IE; [w(d ) = (w(d )| E; [wi(A ))*, (6-16)
and use Eqs. (6.8) and (4.12) to obtain
(WA )| Eylws(d )

= [{A)ClA)*

+ (*A . + (n/2)0);;81 1,4, Jexpl} tr u*w). (6.17)

By noting that

(w*A,. ) expl} tr u*w) = (WA, ) exp(} tr u*w), (6.18)
where

4,,=1+6;) (6.19)

;
Eq. (6.17} can be transformed into the following relation:

(W54 )| E; w2 "))
= (2 [CANC; 1A ")
]

+ (WA, + (n/20);80,4 - 1WA )w(d ). (6.20)

Hence the representation of E; in the BGPCS basis is given
by

E; =C, + (n/2)8,1, C;=C, +(wA,),I.  (6.15)

A similar calculation, detailed in Appendix D, leads to the
following representation of D;:

D, = ¥ 4,,Cy + Cud,,)
k
+ [A, (WA, +n —d —1)],1 (6.15")

In a compact form, Egs. (6.15), (6.15'), and (6.15") can
be rewritten as

D' = wl, (6.21a)
D=A,C+CA, +A,WA, +n—d—1)I, (6.21b)
E=C+(n/2l, C=C+wA,L (6-21c)

Equation (6.21b) can be put into the more symmetrical form
D=A,{C+}[wA, +(n—d— 1I]I}
T —
+{C+ iwa, + nDI}A, (6.22)
There are striking similarities between Egs. (6.11) and
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{6.21). One can go, for instance, from D' in the PPCS Tepre-
sentation to D in the BGPCS representation by transposing
¢, and by replacinguand A, by A,, and w, respectively. The
matrix elements of D are however second-order partial dif-
ferential operators, whereas those of D' are first-order ones.
The PPCS representation of the Sp(2d, R ) generators is there-
fore much more convenient for practical purposes.

To conclude this section, we would like to mention that
the determination of the IPCS representation of the Sp(2d,R )
generators is a very hard problem, which so far has remained
unsolved. The reasons for these difficulties will become
clearer in the next section, where we shall relate the PCS
representations of Sp(2d,R ) with its boson representations.

VII. RELATIONS BETWEEN PARTIALLY COHERENT
STATE AND BOSON REPRESENTATIONS OF Sp(20,A)

In Refs. 16 and 17, we studied the relations between the
CS representations of Sp(2d,R) associated with an irrep
((A + n/2)*), and its corresponding boson representations,
i.e., both generalized Dyson?® and Holstein-Primakoff® re-
presentations. The purpose of the present section is to extend
such results to the PCS representations associated with the
irrep (A, +n/2,..,A, + n/2).

Boson representations of Sp(2d,R) for the irrep
((A +n/2)0) were based upon a one-to-one mapping
between discrete basis states of the irrep representation space
and the boson states |NJ, defined in Eq. (5.11). In the case of
the irrep (4, + n/2,..,A, + n/2), we note that all the dis-
cretebasisstates |N;(4 }} [or |N;{4 )), or |N;{4 ))], correspond-
ing to a given set of quantum numbers N, and to all possible
Gel'fand patterns (4 ) of the irrep [4,4,-4, ], are mapped
onto the same boson state |N]. Whenever 4 ,4,,...,4, are not
all equal, this mapping is therefore A-to-one, instead of one-
to-one.

To recover the bijectiveness in the correspondence
between discrete basis states and boson ones, we can use a
procedure similar to that employed for the same purpose in
studying the representation in quantum mechanics of nonbi-
jective canonical transformations.*®*! Let us enlarge the bo-
son space by considering its Kronecker product with a A-
dimensional space. The basis states of the latter are assumed
to be labeled by a Gel'fand pattern (1) of the U(d) irrep
[A1Ay+A 4], and are denoted by y; - Their representation is
a column vector with 1 in the row labeled by (4 ), and zeros
elsewhere. The extralabel (4 ) plays the same role as the ambi-
guity spin®*?! in nonbijective canonical transformations.**
The extended boson states can be written as

IN;(A)] = |N]X(M (7.1)
or

IN;(4)] = F@")|(2 )], (7.2)
where |(4 ] is defined by

|(/1 )] = IO]XM]- {7.3)

They are clearly in one-to-one correspondence with the dis-

crete basis states of the irrep (1, + n/2,...,A, + n/2) repre-
sentation space, e.g.,
IN;(A )} >IN )] (7.4)

It results from Egs. (5.1) and (7.2) that, in the mapping
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(7.4), the IPCS |v;(4 )]} are mapped onto the states

[GiA)] = 3 Fx(v¥)INs(d )] = exp(} tr v*a")|(4 )], (7.5)
N

which are the product of a Glauber standard CS*' and an

ambiguity spin state. The states (7.5), corresponding to

(A) = (A1),(42)s-,{A )4, can be arranged in a row vector, that

we denote by ||v]]. It is obvious that in the mapping

v} }<{ivlL (7.6)
the form of Egs. (5.4) and (5.6) is preserved, i.e.,
[[¥]Iv]] = exp(} tr v'v*)I, (71.7)
and
(7.8)

f V] 1du(w)[v]) = 1

where du(v) is defined in Eq. (5.7). The set of IPCS therefore
behaves in the same way as the set of standard CS with spin.

In basis {7.5), the extended boson states are represented
by the column vectors

0

0
FN(v) ’

0

[(vIIN;(4)] = (7.9)

0
and the boson creation and annihilation operators @}, and g,
by the matrices v;1and 4, I, respectively. By comparing Eq
(5.9) with Eq. (7. 9) it is clear that the right-hand side of the
Iatter may be considered either as the representation of
IN;(4 )} in the IPCS basis or as that of |N;{4 )] in basis (7.5). In
the same way} the IPCS representation of the Sp(2d,R ) gen-
erators, D', D, and ]E may also be viewed as the representa-
tion of boson operators in ba81s (7.5). By replacing v; and 4,
bya a and g; in ]D ]D and ]E we therefore obtam a boson
representatlon of Sp(2d R ). The latter is a generalized Hol-
stein-Primakoff representation® since the mapping defined
in Eq. (7.4) or Eq. (7.6), being unitary, preserves the Hermiti-
city properties of the Sp(2d,R ) generators. The equivalence
between the IPCS and Holstein-Primakoff representations
accounts for the difficulties encountered in the derivation of
an explicit form for D', D, and E.

We can also establish a one-to-one mapping between
the discrete basis states |N;(4 )) or their dual ones |N;(2 )), and
the extended boson states |N;(4 )]. The PPCS or BGPCS are
then mapped onto the extended Glauber CS. Hence by sub-
stituting a'r and g; foru; and 4, in ]D ]D and IE or for w;
and 4, in DY, ]D and ]E we obtam two additional boson
representatlons of Sp(2d,R ). Both of them are generalized
Dyson representations®® since the Hermiticity properties of
the generators are not preserved under the corresponding
nonunitary mappings.
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APPENDIX A: NORMALLY ORDERED FORM OF THE
OPERATOR exp(} tr u'D)exp(} tr u*D")

The purpose of this appendix is to rewrite the operator
exp(} tr u'D)exp(} tr u*D')in normally ordered form, as giv-
en in Egs. (3.7) and (3.8). Since both exp(} tru'D) and
exp(} tru* D') are elements of the complex extension
Sp(2d,C) of Sp(2d,R ), this calculation can be performed in
any faithful representation of Sp(2d,C).** We shall use here
the defining 2d X 2d matrix representation, given by*’

2d {2d)
DZ ~Etd+J_Ejd+n
2 (2d)
D,‘j—E£1+l,'_, +Ed+jl’ (Al)
— 2d (2d
E,=E0"—E3,,. ..

The matrices E 23, appearing on the right-hand side of Eq.
(A1), are 2d X 2d matrices with 1 in the ath row and the B th
column and zeros elsewhere.

In this representation, the operators }tru’D and
1 tr u*D' are represented by the matrices

0 0 (0 —u*)
1 ! = 1 * * = ) A2
Ltru'D (u’ 0), Jtru*D 0 0 (A2)
hence
ltru' D)= (I 0)
exp{} tr =\
I o n*
exp(} tr u*D') = ( . I" ) (A3)

To prove Eqs. (3.7) and (3.8), we also need the matrix repre-
sentation of exp(tr bE). The latter is given by

exp b 0 )
E)= , A4
exptr bE) ( 0 exp(—Db) (A4)
since from Eq. (A1) it follows that
b 0 )
= A5
tr bE (0 b)) (AS)

By using Egs. (A3) and (A5), Eq. (3.7) is transformed
into the relation

(6 1 vue)
u I-—vuu*

_ (exp b—aexp(—bje —aexp(— b)) , (A6)
exp( — bje exp(—b)
equivalent to the following system of matrix equations:
expb—aexp(—blc=1, (A7a)
a exp( — b) = u*, (A7b)
exp( — bje =, {ATc)
exp(—b)=1—u'u*. (A7d)

The solution of Egs. (A7b), (A7c), and (A7d) is given by Eq.
(3.8). By introducing the latter into Eq. (A7a), we obtain an
identity, thus completing the proof of Egs. (3.7) and (3.8).

APPENDIX B: UNITY RESOLUTION FOR THE SET OF
PERELOMOYV PARTIALLY COHERENT STATES

In this appendix, we wish to show that the operator

0= Jdudu*”u)) fu,u*)( (ul| (B1)
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commutes with the Sp(2d,R ) generators, when the weight
matrix f{u,u*) is chosen as

flu,u*) -4 (detU)—“9~ 1l[/i"l(U), (B2)
where U is defined by

U=1I-—u*u, (B3)
and

K~'(U) =K~ '(uu*) (B4)

is the inverse of the overlap matrix lﬁ(u,u*). To this end, we
shall first establish the conditions imposed on flu,u*) by the
equations

[£;,0] =0, (B3a)

[D},0]=0, (B5b)
and next prove that they are satisfied by the right-hand side
of Eq. (B2). Equation (B5b) will then imply that O also com-
mutes with Dlj, since U is a Hermitian matrix.

The action of the Sp(2d,R ) generators on ||u)), and
({ul| can be deduced from the results of Sec. VI since it does
not depend on whether the PPCS form or do not form a
basis. From Egs. (6.1) and (6.11), and the Hermiticity proper-
ty E, =E}, Eq. (B5a) is transformed into the following
equatlon

f du du* {[uu»éij + (u*A,,, n %I)ﬁ Hu))]
X fu,u*)(Cul| — [u) ) fu,u*)
x[f:g + (uA,, + %I)UH] <<uu} —o, (B6)

where the differential operators A, (A,.) can now be trans-
ferred from ({u|| (||u))) to the weight matrix flu,u*) by inte-
grating by parts. This calculation leads to the following par-
tial differential equation for f(u u*):

[(uA,), — (*A,.}, ] Fuu*) = [Fuu*),C,]. (B7)

The same procedure applied to Eq. (B5b) gives rise to the
additional equation

[z waluA, )y — (n —2d — 2Ju, — Au;} Huu®)
k i

= fu,u*)(Cu + ud),. (B8)
In deriving this relation, we used Eq. (6.13) to let the differen-
tial operators A, directly act upon flu,u*).

By introducing Eq. (B2) into Egs. (B7) and (B8), the
latter are transformed into the following two equations:

—(d+ D{[(ud,), — (u*A,.), ]det UJK~'(U)
= det U{ — [(ud,), — (u*A,.), K~ '(U)
+ [K0)E,1) (BY)

ij

and

—d+ 1){[; (A, )y — 2u; — Au;j]det U] K-

XK~ 1(U) + K~ (U)Cu + uE),,],

which remain to be demonstrated to complete the proof.
For such purposes, we shall use the partial differential

= det U[ — [Z Uy (WA, )y —nu
k

(B10)
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equations satisfied by the overlap matrix Iﬁ(U). The latter
can be established as follows. By using the Hermiticity prop-

erty E, = E |, the matrix ({u||E,||u)) can be put into either
of the two forms:

(Cul|E; [[u))

=€, + (A, + (n/2)1) ;1] (Cujju))

= ((ull[ ||u))C,.j + (u*Au. + (n/2)I);|l})], (Bl
hence leading to the equation
[(uA, ), — (u*A,. ), ]K(U) = [K(ULE, ] (B12)

The same procedure applied to ((u||D [{lu)) gives the addi-
tional equation

S walub, )y + e, — 4, &)

= — (Cu + uC),K(U),
where we used Eq. (6.13) again.

From the identity K~ '(U)K(U) =1, it follows that for
any first-order partial differential operator &2

ZK-U) = — K~ Y(U)[ZK(U)K (). (B14)

By combining Eq. (B14) with Eqgs. (B12) and (B13), we obtain
the following relations:

(B13)

[(uA,), — (u*A,.); ]K~'(U) = [K-'(U),E,],  (BIS)
and
[z e (0 )y — ity — Au,]ﬁ—‘(w
T i
=K~ '(U)(Cu + uC),, (B16)

which imply that the right-hand sides of Eqgs. (B9) and (B10)
are both equal to zero.

Finally, we note that when 4, =4, = .. =4, =0, the
overlap matrix reduces to
K(U) = 4 (det U)~ ™1, (B17)

and (CU is equal to zero. Equations (B12) and (B13) then,
respectively, become

[(ud,); — (u*A,.); ]det U=0,

and

(B18)

2u, —4,. |det U=0, (B19)

Z uy(uad, )jk -
k
thereby showing that the left-hand sides of Egs. (B9) and
{(B10} do also vanish, which completes the proof.

APPENDIX C: UNITY RESOLUTION FOR THE SET OF
BARUT-GIRARDELLO PARTIALLY COHERENT
STATES

The purpose of this appendix is to prove the existence of
a matrix measure do{w) satisfying the unity resolution rela-
tion (4.25).

We start by noting that the Sp(24,R ) group can be em-
bedded into the larger group Sp(2dn,R ), whose generators
are given by

D {Ts Fi = )t is "st"?;n (ZS)<(]t )’
Dis,jr = Jt.is §ls§jl’ (lS)((]t )’ (Cl)
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and

E i =3 + &),

where i,j=1,....d, and s,t = 1,....,n. As a matter of fact,
Sp(2dn,R ) contains the direct product of Sp(2d,R ) with the
O(n) group, generated by the operators

A, = —A,= —1i 2 (Eiie — Eiis)  1<5<<n.(C2)
i=1
We have therefore the group chain
Sp(2dn,R) D Sp(2d,R ) X O(n),
(172" (Ag +1/2,.. 4, +n/2) (A1..-Aq)
or {{1/2)*~13/2),
(C3)

where below each group we have indicated the quantum
numbers characterizing its irreps.

All the boson states belong to one of two irreps of
Sp(2dn,R), {(1/2)*") or ((1/2)**~'3/2), according to
whether the total number of bosons is even or odd. Within
each one of them, the Sp(2d,R ) and O(n) groups are comple-
mentary’ in the sense that there is a one-to-one correspon-
dence between all their irreps, respectively, characterized by
Ay +n/2.. A +n/2) and (A,--4,). The representation
space of {1, + n/2,..,A, + n/2) can therefore be realized

|N }) of such a representation space are obtained by choos-
ing as basis states |(4 )) of the U(d }irrep [4,--4, ] in Eq. (2.6)
those boson states which are at the same time of highest
weight with respect to O(n).

In the Bargmann representation,?’ the boson creation
and annihilation operators, 7, and &, are, respectively, rep-
resented by some complex variables z,; and the correspond-
ing differential operators d /dz,;. The boson states are then
represented by analytic functionsinz,,i = 1,...d,s = 1,..,n.
In particular, for the discrete basis states |N;(4 )), the latter
are given by

¢N(/{) xs H(

‘)—1/2

[(1+6,,) S ] b (zsh (CH)

and span a subspace of this Bargmann Hilbert space of ana-
Iytic functions. In Eq. {C4), we note the appearance of the
combinations Z,z,z,, which are actually the scalars with
respect to O (n) that can be built from the z,; variables.

In Ref. 26, a transformation from the z;; variables to
new variables, including the combinations 2,z z, , was pro-

posed. These new variables were defined by

by selecting all the boson states transforming under the irrep Wy = S;l ZisZjss (C5a)
(4,4 ,) of O(n), and belonging to a definite row of the latter,
e.g., their highest weight states. The discrete basis statei Xig =27z 00 1 — iZi2a), @ = 1,40, (C5Y)
22 iz;5.), =1,..,0—I,
yip — { (zl,sz 1 + lz,,2p) p ' i (CSC)
Zins p=1—i+1(onlywhenn=2/+1),
f
where ! = [n/2]. When this transformation is performed on (N4 )IN;(A )
@a)2;5), it turns out that it only depends upon the x,, varia-
bles, so that Eq. (C4) becomes = Y J [H dulz, )](N' A )W)
= ) 6 (KA
Pria (0 %) = FulWra) Fia) (ce) X [ B )] * i) beia w2 ) INSGR ). (C9)

By comparing Eq. (C6} with Eq. (4.19), we conclude that the
former can be rewritten as

¢N,[/1)(wij Kier)

= ¥ duy X)W INA)),

)

provided w; in (w;(4 ')|N;(4 ) is interpreted as 2z, z;; in ac-
cordance w1th Eq. (C5a). This interpretation is actually not
restrictive since for any set of complex variables Wy,
1<i<j<d, it is always possible to find some complex varia-
bles z,, i = 1,...,d, s = 1,...,n (>2d), such that Eq. (C5a) is
fulfilled.

Let us now calculate in Bargmann space the overlap of
two discrete basis states

(NA)N;(4))

= f [1;[ d/t(Zis)] [Ina (wyxia) ]*

X¢N,u. ) (wij!xl'a )s (C8)

where du(z) is the standard Bargmann measure, defined in
Eq. (5.8). From Eq. (C7), it can be written as

(C7)
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When performing the change of variables (C5) in the integral
on the right-hand side, Eq. (C9) is transformed into the rela-
tion

(NSAIN;A D
-3 f dw dw* (N4 )| w2 )
A¥1)
N S (C10)

where the function f(;1 wI) (w,w ) can, at least in principle, be
obtained by integrating the product of [z (x:,)] *dz,(xix)
with the Jacobian of the transformation over the x,, and y,,
variables.

Since the states [N;(4 )) form a basis of the representa-
tion space, and Eq. (C10) is valid for any values of N, N', {1 ),
and (4 '), it imposes that in this space there exists a unity
resolution relation for the BGPCS, given by

z dw dw*IW;(Z W (Wawt)(W;(z =1
@i
Equation {C11) coincides with Eq. (4.25), whose existence is
therefore proved. In passing, we have also demonstrated that

(C11)
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if we interpret w in accordance with Eq. (C5a), the BGPCS
|w;(4 )) span a subspace of a Bargmann-Hilbert space of ana-
lytic functions. This subspace, characterized by definite
transformation properties with respect to O(n), might be
called a Barut-Girardello space.

APPENDIX D: CALCULATION OF f)}; AND D,

The purpose of this appendix is to prove Egs. (6.4") and
(6.15"). Starting with the former, we note that from Eq. (6.5)
we may write
(w(d)D} 1)

= ((4)] [D:E + (Cu)ij + (Cu)ji + nu; + (“D“)ij]
Xexp(} tr uD)|¢). (D1)

When acting upon the bra {(4 )|, D} gives zero, Cy, trans-
forms it into a linear combination of bras ({4 )|, and (uDu);
may be replaced by

Zuiku,}-Auk,: {[uA, —(d+ D]u},, (D2)

where use has been made of Eq. (6.13). Equation (D1) there-
fore becomes

COUHIED> [z [()ICa A Dty
+ ((/UIC,kI(/i I))”ki]
+ [(uAu +n—d— 1)u],.j5(i),u.,]

XAw(A)|¥), (D3)

and leads to Eq. (6.4”) when definition (6.9) is taken into
account.

We next prove Eq. (6.15"). For such purpose, we start
from the relation

(W;(A )| Dy (A ") = (u(d )| D] wi(d)*, (D4)
and use Egs. (D3) and (4.12) to obtain
(w54 )1 Dy w4 )
— {3 ikl u
+ (A )Cuc A ) *u ]
+ [(u*A,. +n—d— l)u*]ijé(,l,,,m]
X exp(} tr u*w). (DS5)

The last term on the right-hand side of Eq. (D5) may be
transformed as follows:

[(u*A,. +n —d — 1ju*]; exp(} tr u*w)

= [; ufupd,. + nu;;.‘]exp(g tr u*w)

= [Z wk,AwikAwU + nAwU]expg tr u*w)
kI

= [A, (WA, +n —d—1)]; exp(} tr u*w), (D6)
by applying Eq. (6.13) in the first and last steps. The remain-
ing terms in Eq. (D5) may also be converted into differential
operators with respect to the w,;’s by replacing «}; and u¥; by
A4 w, and4,, , respectively. Finally, by using Eq. (4.12) again,
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as well as the Hermiticity property C ; = C;, we obtain the
result

(w;(4 )| Dy w54 7))
-3 S [@icule DA,
+(QC 1A DA, |
+ (A WA, +n—d— 1)],-,-5(1,,(“]

X (WA ") |wd D,
which proves Eq. (6.15”) valid.

(D7)

M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971).

2R. C. Hwa and J. Nuyts, Phys. Rev. 145, 1188 (1966).

3B. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974),
p. 286.

*C. Quesne and M. Moshinsky, J. Math. Phys. 12, 1780 (1971).

E. Chacén, D. Levi, and M. Moshinsky, J. Math. Phys. 17, 1919 (1976).

®N. J. Gunther, J. Math. Phys. 20, 1539 (1979).

M. Moshinsky and C. Quesne, J. Math. Phys. 11, 1631 (1970).

8L. D. Mlodinow and N. Papanicolaou, Ann. Phys. (N.Y.) 128, 314 (1980);
131, 1{1981).

°L. C. Biedenharn and J. D. Louck, Ann. Phys. (N.Y.) 63, 459 (1971).

'9G. Rosensteel and D. J. Rowe, Ann. Phys. (N.Y.) 126, 343 (1980).

"'G. F. Filippov, V. L. Ovcharenko, and Yu. F. Smirnov, Microscopic The-
ory of Collective Excitations in Nuclei {in Russian) (Naukova Dumka,
Kiev, 1981).

12V, Vanagas, The Microscopic Nuclear Theory Within the Framework of the
Restricted Dynamics, in Lecture Notes in Physics (University of Toronto,
Toronto, 1977); V. Vanagas, The Microscopic Theory of the Collective Mo-
tion in Nuclei, in Group Theory and Its Applications in Physics-1980, edit-
ed by T. H. Seligman, AIP Conference Proceedings No. 71 (A.I.P., New
York, 1981).

'30. Castafios, A. Frank, E.Chacén, P. Hess, and M. Moshinsky, J. Math.
Phys. 23, 2537 (1982).

“P. Kramer, Ann. Phys. (N.Y.) 141, 254,269 (1982).

3. Deenen and C. Quesne, J. Math. Phys. 23, 878 (1982).

'¢]. Deenen and C. Quesne, J. Math. Phys. 23, 2004 (1982).

'7J. Deenen and C. Quesne J. Math. Phys. 25, 1638 (1984).

'8, Deenen and C. Quesne, in Group Theoretical Methods in Physics, Pro-
ceedings, Istanbul, Turkey, 1982, edited by M. Serdaroglu and E. Inénii,
Lecture Notes in Physics No. 180 (Springer, Berlin, 1983), p. 444.

19G. Rosensteel and D. J. Rowe, Int. J. Theor. Phys. 16, 63 {1977).

%A, U. Klimyk, J. Math. Phys. 24, 224 (1983).

21R. I. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).

22A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972); Usp. Fiz. Nauk
123, 23 (1977) [Sov. Phys. Usp. 20, 703 (1977)].

A, O. Barut and L. Girardello, Commun. Math. Phys. 21, 41 (1971).

24y. 8. Vasilevskii, Yu. F. Smirnov, and G. F. Filippov, Yad. Fiz. 32, 987
(1980) {Sov. J. Nucl. Phys. 32, 510 (1980)].

251 M. Gel'fand and M. L. Tseitlin, Dok!. Akad. Nauk SSSR 71, 825 (1950).

26J, Deenen and C. Quesne, J. Phys. A: Math. Gen 16, 2095 (1983).

27V, Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).

28F. J. Dyson, Phys. Rev. 102, 1217 (1956).

25T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

30p, Kramer, M. Moshinsky, and T. H. Seligman, J. Math. Phys. 19, 683
(1978).

3'M. Moshinsky and T. H. Seligman, Ann. Phys. (N.Y.) 114, 243 (1978);
120, 402 (1979); J. Deenen, M. Moshinsky, and T. H. Seligman, Ann.
Phys. (N.Y.) 127, 458 (1980).

32Note however that in nonbijective canonical transformations, the ambigu-
ity spin characterizes the irreps of the ambiguity group, itself connected
with the classical phase space structure. Since, in the present case, we are
discussing a quantum-mechanical problem with no simple classical ana-
log, the corresponding concept of an ambiguity group is unfortunately
missing.

3R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wi-
ley, New York, 1974).

J. Deenen and C. Quesne 2366



The Kostant partition function for simple Lie algebras

Jeffrey R. Schmidt and Adam M. Bincer

Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706

(Received 12 December 1983; accepted for publication 24 February 1984)

A simple algorithm is developed for evaluating the Kostant partition function for any simple Lie
algebra. The algorithm may also be used to express the partition function for one Lie algebra in
terms of the partition function for another, with the latter algebra not necessarily a subalgebra of
the former. A special role in the algorithm is played by the sum of the simple roots. Explicit,
closed-form expressions are given for the partition function for a variety of special cases.

PACS numbers: 02.20.Qs

i. INTRODUCTION

We present a series of results dealing with the evalua-
tion of Kostant’s partition function. This function is used in
the theory of Lie algebras to determine the (inner) multiplic-
ity of a weight in an irreducible representation and the (out-
er) multiplicity in tensor products of irreducible representa-
tions.

The paper is organized as follows. In Sec. II, we define
the partition function in very general terms and give an algo-
rithm for its evaluation by introducing a set S and its subset
T. In Sec. 111, we obtain a general formula for Kostant’s
partition function for any simple Lie algebra L by taking for
S theset of positive roots of L and for T the set of simple roots
together with a special root called 1. The inclusion of this
root 1, which equals the sum of all simple roots and is present
in every simple Lie algebra, is crucial to our arguments. As
examples we give explicit formulas for the algebras 4, and 4,
and point out a minor error in the results of Tarski on this
subject.

In Sec. IV, we derive a variety of recursion formulas by
means of which the Kostant partition function for the alge-
bra L can be gotten from the Kostant partition function for
the algebra L ’. It is interesting to note here that the algo-
rithm does not require that L ' be a subalgebra of L but only
that the positive roots of L ', with respect to some basis of
simple roots, be a subset of the positive roots of L. As appli-
cations of this approach we give the partition functions for
B,,C,,and 4, _ | in the form of multiple sums over the parti-
tion function for 4, even though 4,4 B,, 4,4 C,.

In view of the above we concentrate on P, (k), the Kos-
tant partition function for 4;. To solve the recursion rela-
tions for P, (k) requires evaluating (/ — 1)-fold sums whose
limits have a complicated dependence on k. For arbitrary k
and / this is a formidable task which we hope to tackle at
some later date. We are, however, able to solve these recur-
sion relations when k is restricted to be monotonic (by which
we mean that the successive components of k are nonde-
creasing or nonincreasing) and this is done in Sec. V. Even
more explicit results can be obtained by imposing additional
restrictions on k. Thus, for example, we give in Sec. V closed-
form expressions for P, (k), for / up to 7, when the compo-
nents of k are restricted to be all equal.

Under the extreme restriction, k = 1, we are able to
show that

P (1)=2/""

2367 J. Math. Phys. 25 (8), August 1984
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for any simple Lie algebra L of rank /. This result is proved in
Sec. VI

Il. PARTITION FUNCTION

Let N be the set of non-negative integers and consider
the /-tuples

k=(k,ky, .., k), keN. (2.1)

Let S be a finite subset of N/, the set of -tuples whose compo-
nents are chosen from N. The partition function Pg(k) is the
function whose value on k is the number of ways of forming k
as linear combinations of elements of .S with non-negative
coeflicients.

To evaluate Pg(k) we introduce T, a subset of S, and its
complement S \ 7,

S=TuS\T (2.2)
and write k as
k=m+4n, (2.3)

where m and n are some linear combinations of elements
from 7T and S \ T, respectively, and by definition
m; >0, n,>0 foralli. (2.4)
Specifically suppose that

n= Y j,p,=n(j), j,eN, p,eS\T, (2.5)

r=1
where x denotes the number of elements in S \ 7. It follows
that the number of ways of writing k as
k=m + n(j) (2.6)

for a particular fixed configuration of the j,, j,, ...
by

2 Jx 18 given

Pr(m) = Pr[k —n(j)], (2.7)
and therefore
Ps(k) =Y Pr[k~n(j)]. (2.8)

Here 2 stands for summation over all allowed configu-
rations of the j,. In view of Egs. (2.4) and (2.6) we must have
k; — n;(j)>0 for all i/, which we shall write as

n(j)<k (2.9)

and the allowed j, must satisfy this constraint. There may be
additional restrictions on the j, depending on the specific
nature of the sets.Sand 7. We next obtain a number of results
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for Kostant’s partition function by using Eq. (2.8) for various
choices of the sets Sand 7.

ilIl. KOSTANT’S PARTITION FUNCTION

Let L be asimple Lie algebra of rank / with simple roots
a,, which may be conveniently written as unit /-tuples

o =(10,..,0),

a,=(0,1,0,..,0),

@ ( ) 63.1)

a,=(0,0,..,0,1).
Kostant’s partition function'™ for this Lie algebra L, to be
denoted by P, (k), is obtained by taking for S the set @ ;,
which is the set of positive roots of L

P, (k)—:—P¢L+ (k). (3.2)

In other words, P, {k) is the number of ways of writing

k=ka, + ka, + - + kq, (3.3)
as linear combinations of the positive roots with non-nega-
tive coefficients. The Cartan matrix determines the positive
roots, their number is finite and any ac® ;" may be written
as a = 2! _ 5,0, 5;€N, a, the simple roots.

We next observe that every simple Lie algebra possesses
the positive root

1=(1, 1, .., I)= i Q (3.4)

i=1
and choose for T the following subset of @ ;' :
T={a;,ay..,a,l} (3.5)
To evaluate the partition function P,(m) we must count
the number of ways of writing m as non-negative linear com-
binations of the elements of T, Eq. (3.5)
m=m,(1,0,..,0)+m,0, 1, ..,0
+ e 4+m(0,0,..,0,1)
=(1,1,.., )+ (m; —1)1,0, ..., 0)
+ (m, — 1){0, 1,0, ...,0)
+ o (m, = 10,0, ..,,0, 1)
=2(1, 1, ..., )+ {m, —2)(1,0,..,0
+ (m, —2)(0, 1,0, ..., 0)
+ e+ (m, — 2)(0,0, .., 0, 1)

=u(1, 1, ..., 1) + (m;, —p)(1, 0, ..., 0)
+ (my — w)(0, 1,0, ..., 0)
+ o+ (m, — p)(0,0, ..., 0, 1), (3.6)

where

4 = min[m] (3.7)
and by min[m] we mean the smallest component m,. There-
fore,

P, m)=1+ min{m]. (3.8)

Combining this with the results of Sec. II yields the
following formula for Kostant’s partition function:

P k)=3 {1+ min[k —n.(/)]}, (3.9)
where the sum is over all j, j,, ..., j, €N such that

n, (j)<k, (3.10)
and where

n.(j)= Y jp, Jj.€eN, pel\T, (3.11)

r=1
with x; denoting the number of elements of L \ T=® ;" \ T,
i.e., the number of positive roots of L left after omitting 1and
the simple roots.
As a simple application of the result Eq. (3.9) suppose

that L = A4,. Since
P, = {a, oy o, + a,=1} (3.12)

the set 4,\ T is empty and we have the well-known answer

P, (ki ky) =1+ min(k,, k). (3.13)
As another example take L = 4. Since
D ={ay, dy a0 + 0y, A, + ay, 1) (3.14)

the set A5\ T contains the two elements p, = a, + o, and
P> = o, + a5 so that

n, (j)=jipy +jp2 = (JrsJ1 +Ja Jo)
Hence,

(3.15)

P, k= Z {1+ minlk, —j;, ky —j, — Jor ks — J»)}
4|'j2
! (3.16)
with the constraints on the summation
0<j1<k1’ 0<J’1 +j2<k29 (317)
Although the sums in Eq. (3.16) are straightforward,
the answer depends on the relative size of k,, k,, 5, and
k, + k,. The results are summarized in Table I where the
various cases are labeled as in Tarski' to facilitate compari-
son. We agree in all cases except (d); we note that Tarski’s

expression for that case is not positive.
It should be remarked that the literature on explicit

0< j,<ks.

TABLE L The partition function P, (k). Three more cases are obtained from (b), (c), and (d) by exchanging k, and k5.

Case P, (ki ky, k3)
(@) ko<ky, &y ko + 1)(k; + 2)ik, + 3)
(b} k,<k,<k5 3k + Yk + 2)(3k, — 2k, + 3)

(c) k\<ky<ky + ky<k,
{d) k<ks<ka<k, + £y

Nk + Uik, + 2)(3k; — &k, + 3)
iy ks + 203k — 4+ 3)—

ths + &, —k2+2))
3
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evaluations of Kostant’s partition function is extremely
scant. We are able to find but one reference, the paper by
Tarski,” dealing with 4,, B,, G,, and 4.

With increasing rank / direct use of Eq. (3.9) becomes
more and more cumbersome. In the next section, we present
a recursive approach which is often more practical.

IV. RECURSION FORMULAS

Let L and L ' be two simple Lie algebras of rank /and [,
respectively, with />/’, and let @ ;* D& ;.. Note that we do
not require L ' to be a subalgebra of L but only that its posi-
tive roots @ ;* be a subset of @ /. We require only that the
coefficients of root £ in L, with basis {e, a5, ..., @, }, be the
same as the coefficients of the root £ in L * with basis
faj, ...ap ., oré=ca,+ - +cainL and £ =c,a]

+ -+ ¢,a;in L’. Directionand length of £ in L and L ' need
not be the same. We obtain Kostant’s partition function P,
interms of P; . from Eq. (2.8) by choosing thesetS tobe @ [
and the subset T tobe @ ;©

PL(k)ZZPL' [k_nLL'(j)]’

where 3 means summation over allowed configurations of
the j,, and where

(4.1)

XLL:

nLL'(j) = 2 jrpr’ jreN, p,EL \L ’,

r=1

(4.2)

withx, ;. thenumberofelementsin L \L '=® ;" \® /' |i.e,
the number of positive roots of L that are not roots of L.

A word about notation. By definition k is an /-tuple, the
elements of @ ;* are /-tuples and the elements of @ /- are /’-
tuples. However, when @ ;' is viewed as a subset of @ ;' its
elements are /-tuples. A moment’s reflection shows that
these elements of @ ;" are /-tuples which all have the same
! — 1" components identically zero. If we agree to label these
! —1' components as 1, 2, ..., / — /', then the condition for
allowed configurations j, may be stated as

n., (j)<k, (4.3)
which is our standard constraint, and
[ (] =k for I<i<i -1, (4.4)

which ensures that k — n,; . () is an /’-tuple.

As a first application of Eq. (4.1) we consider L = B,
and L' = A,. Indeed, the /? positive roots of B, may be de-
composed into

¢g =¢AfuB,\A,, (4.5)
where the / (/ + 1)/2 positive roots of 4, are
t—1
¢A+,=[Z A,s 1<s<t<l+1] (4.6)
and
t—1 !
B A4, = { > a,+2 Z «,,, 1<s<t<l}. (4.7)
m=s m=1
Therefore,
PB,(k)=zPA,[k_nB,A,(j)]) (4.8)
2369 J. Math. Phys., Vol. 25, No. 8, August 1984
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nB,A,(j) = z jrpr’ j,GN, prEBI \Al (4‘9)
r=1+ X4,
and, since / =/’ in this case, the allowed j, obey
ng . (j)<k. (4.10)

Since the elements of B, \ 4, consist of the positive roots of B,
that are not roots of 4, and since both @ ; and @ 7 contain
as a subset the T of Eq. (3.5), we can use in Eq. (4.9) x,, and
X, as defined by Eq. (3.11). Note that it also follows from
Egs. (3.11) and (4.9) that

nB,A,(j) = nB,(j) - nA,(j)‘
Quite explicitly suppose / = 3. Then

(4.11)

B4y = {a, + 20, + 205, o, + @, + 205, @, + 20,1,

(4.12)

nB,A,(j) =jile; + 20, + 2a;)

+hla; + a; + 2a5) + j3(@; + 2a;)
={/i +J»2ji+J> +J3 2+ 2j>+2j;), (4.13)
and therefore,
PB;(k) = Z PAJ(kl —Si—Juky—2j1—],
Jviais

~Jn ks —2j1—2j,—2j,), (4.14)

with j,, j,, /€N subject to the constraints

2jy +ja+is<ky 2ji+ 2/, + 2j5<k;
(4.15)

jl +j2<kl’

As a second application of Eq. (4.1) take L = C, and
L’ = A4,.Itisagain truethat the ! positive roots of C, may be
decomposed into

¢C+1 = d)jju Ci\4,,
where

(4.16)

t—1 1—1
C\4, = [a, + > e, +2Y a,, I<s<u<i— 1]
m=s m=t
(4.17)
and so the analog of Eqs. (4.8)-(4.10), with B, replaced by C,
everywhere, follows.
As a last application of Eq. (4.1) we take L = 4,

L’'=4, ,,sothat/>/’and the additional constraint Eq.
(4.4) becomes operative. It follows from Eq. (4.6) that

t—1
ANA,_, ={ > a,, l<<i+ 1], (4.18)

m=1

!
D4, (J) =Jie; +jola; + ay) + -+, Z a,,
m=1

! 1
= (z Js» z Jss wes Jio +jl’j1)' (419)

s=1 s=2
Clearly the additional constraint, ensuring that
k—n,, (j)isan(/— 1)-tuple, reads

]
stzkl

(4.20)
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and may be used to eliminate j,. Therefore,

Pk kyy s Ky
] !
= Z PA,,,(kz - Z Jor k3 — Z Jor e Ky _jl)
Jas Fysenidy s=2 5=3
(4.21)
with the summation constrained by
!
Y ji<k; for 2<i<! (4.22)
and
!
Y ji<k, (4.23)
s=2
Equivalently we may write
P, (ky ko oy ki)
Tt Ti—1 7,
=3 3 5P (k-3
=04 _=0 j=0 s=12
1
ky — 2 Jos vees Ky —j,), (4.24)
s=3
where
! !
r= min(k1 - > Juk S e K
s=i+1 s=i+1
!
Z jx), 2<igl. (4.25)
s=i+1

These results are still too general to provide explicit
formulas. In the next two sections we are able to obtain more
explicit answers by imposing various restrictions on k.

V. THE PARTITION FUNCTION £, (k) FOR
MONOTONIC k

Even in the relatively simple case of P, (k) the explicit
formulas had to be classified into seven cases depending on
the relative size of the components of k. For higher rank / the
number of such cases increases rapidly. If k is specialized to
be monotonic, by which we mean

or
k;>k;
we are able to obtain results for arbitrary rank /.
We assume from now on without loss of generality that

Eq. (5.1) holds and denote the partition function for such &
by P, (k). For such k Egs. (4.24) and (4.25) yield

for i<}, (5.2)

PAl(k) Z z PAI l(k - Z-IS’
J1=0j;_1=0 =0
k, — st, ok —j,) (5.3)
s=3
with
!
=k~ 3 j, 2<t<l (5.4)

(it being understood that =] _,, ; j, = 0). By relabeling the
summation indices according to

!
j!’ = st’

s=1

2<t, s<l (5.5)

{and then dropping the prime) and reversing the order of the
sums we convert Eq. (5.3) into

Jl 1

A,(k)'_ 2 2 E PA, (kg —jo, k

=0j,=0 ji=0

_j3’ R kI ~-.]l)

We now assert that for />3
Bk ko o k) = 13K,y — 2Kk, +3)
XS (ks kgy oes Ky _5)s
i.e., that i’Al(k) is independent of &, depends on k&, _,
through the factor (3k, _, — 2k,_, + 3) only, and depends
on the remaining components of k through the function S,

defined by the relation (5.7). To prove Eq. (5.7) we proceed by
induction on the rank /. First, we have from Table I that

(5.7)

Py (ks ey hes) = Y3k, — 2K, + 3k, + 1)K, + 2,
which is of the indicated form with
k,+2
Sy(k,) = ( Y ) (5.8)

Next assume the validity of Eq. (5.7) for rank / — 1 and

k. <k, for i<j, (5.1)  insert it on the right-hand side of Eq. (5.6) to obtain
]
A k, J2 Ji—s . . X
P, k)= z Si_1(ky —Jjor ks = Jay s by —Ji_3)
2=0j3=0 j_,=0
Ji_2 Jioa 1 . .
X ¥ > =Bk =3ji_y—2k_, +2j,_, +3)
Ji-1=0j;=0 3
1 e (i +2 . .
=—03k_, —2k,_, +3) 2 Z > S 1 (k2 —Jos s Ky — i) (5.9)
3 2=0j=0 j_,=0
This completes the proof of Eq. (5.7) by induction and also yields the recursion for S, for /> 3:
k, J2 Ji—3 J _ + 2 i .
Sitky, kyy s ky_ o) = 2 z z (1 ; )Sl—l(kZ —Jas e ki3 —Ji_3) (5.10)
J2=0j=0 Ji—2=0
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The solution to this recursion is

Silky, kyy ooy

1

where
=3 3 - 5 2 (5.12)
m =0m,=0 mg,_=0mg
and
m, :(542-3)_ 1 _ig mg, (5.13)

and we omit the straightforward but tedious proof by induc-
tion on the rank /.
As one application of this result we observe that for

ki =k 5 =1—1-3 (5.14)

all the binomials in the product over  vanish, except if
m,_,, = 0 when the binomials equal unity. Consequently

Sk b k+ 1L k+3, . k4 (I — 41— 3)/2)

-1
k44— —1
= + 2 FiR {5.15)
k
where
fi=21L L 41 (5.16)
Specifically
fi=1, (5.17)
fi=Ll= 5 1=3 (5.18)
my =0
=2 L= 5 Y S 1=28 (519
my=0my;=0my,=0
=¥y ¥y 3y §i-wm
'"11=0m21‘°"‘21—0"‘31*0’"32*0"'33—0
(5.20)

etc.

As another application we offer explicit formulas for
A,, As, A, and 4, in the case when all the components of k
are equal:

sk k1=(37). (5.21)
Sk k=5 (k+ 3)(k+8)’ (5.22)

Sylk, &, k,k)=?(k+3)%(kz+ 12k+26)(k-1+111),
(5.23)

Sk, k, k, k, k)

k+15 k+16) | 244 (k+17
~weafpl* %) -1+ 2 ()
( +3)[3 15 e /75w

K+ 18) (k+ 19)}
_ 2
99( 8 )T 9 Jf
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k +m__ - —l—z
k1—2)=gl$2"'~71_3( i 7 3) H ( —1

~k; s +m_,—l+t+2
t-2e M, ) (5.11)
m; 3
—
and, of course,
P,k k, ..., k)= ik + 3)S,{k, k, .., k). {5.25)

Finally, consider the extreme specialization of k when
all its components are unity

k=1 (5.26)
For such k Eq. (5.6) becomes
1 Ja Ji—a
PA,(I) = Z z PA, , ~J» 1 =3 s 1 =)
J2=0/=0 qi=
(5.27)

The sum over j, consists of two terms, /, = 0 and j, = 1, each
of which contributes precisely P, (1) so that we have

P, )=2pP, (1), (5.28)
which combined with P, = 1 yields
P (1)=2""", (5.29)

It turns out that the partition of 1 equals 2/~ for any
simple Lie algebra, not just 4,. A general algorithm, proving
this statement, is given in the next section.

VI. THE PARTITION FUNCTION ~, (1)
In this section we prove the proposition

P1)=2""", (6.1)

where L is any simple Lie algebra of rank /.

For the sake of convenience we shall call any linear
combination of positive roots totaling 1 a partition of 1.
Clearly partitions of 1 can involve as summands only roots
containing single or zero multiples of the simple roots. Let
O, be the set of /-tuples satisfying

0, = {(xy, X5, ..., x;)|x;, =0 or 1}

!
=[Z x;0, xi=00r1]. (6.2)
i=1
Then
P, (1) = P, (1), (6.3)
where
0,=0,nP ;. (6.4)

The cardinality of the set 8, is less than or equal to that of
@ ;F. We suggest the following method for determining &, .

Lemma: Let D, be the Dynkin diagram for L. Then 6,
is the set of /-tuples obtained by taking the root 1 from each
subalgebra M of L, where the allowed subalgebras 3 have
Dynkin diagrams D,, consisting of connected fragments of
D, .

Proof: Consider a connected fragment D,, which con-
sistsof roots o, «, , ,, ..., @, , ; of L. Then the root 1 for M is
o o+ + a,ﬂ Since M C L, the root system of M
is entirely contained in the root system of L. Hence the root 1
of M is a root of L. Since D,, was any connected fragment
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this proves
ACE,,

where A is the set of all roots 1 for all choices of M.

Next let B be any element of 8, and consider how the
roots of L are obtained from the simple roots a, ..., a,.
Recall that a; + a; is a root provided («;, «;) <0, where
{(a;, a;) is the Cartan integer in the ith row and jth column of
the Cartan matrix. This means that «; and o, must be con-
nected by at least a single bound in the Dynkin diagram of L.
Continuing to build up B by adding in more simple roots we
seethat = o; + a; + - + o, isarootonlyifeacha,, in B
is connected to at least one other a, in B. Thus we have
shown that any element in #, must be a root in a Lie algebra
corresponding to a connected portion of D, , or, by an appro-
priate choice of the fragment D,,, that

(6.5)

ADE,. (6.6)
Combining Eqgs. (6.5) and (6.6) yields
A=6,, (6.7)

and this proves the lemma.

We now use this lemma to prove our proposition Eq.
{6.1) by considering what is usually a much smaliler set of
roots than all of & /.

We proceed by induction with the following strategy.
The Eq. (6.1) is obviously true for L = 4, = B, = C, by ele-
mentary considerations. Next we find the largest subalgebra
M of L, generated by a connected fragment D,, of D, , and
determine the roots in the set

onL\M. (6.8)
(Recall that L \ M is the set of positive roots of L with the
positive roots of M left out.) Let y be in this set and call M,
that subalgebra of L for which this v is the root 1. Let the
complementary fragment of D, , obtained upon removal of
D, ,be called D M, Then the partitions of 1 in L generated
by v are all of the form

Yy+y =1, (6.9)

where y* is a linear combination of roots in M ;,, the subalge-

bra of L complementary to M, . By summing over all such

linear combinations we obtain P, . (1), hence
P (1)= 2 PM;(I). (6.10)

fyi

TABLE II. The roots y in O;n 4,\ 4, _, and the corresponding comple-
mentary fragments D3, .

Y D,
Q, D, .
o + o, DAI—Z
ottty b,
o t+a;,  +-tat+a *

TABLE II1. The roots y in O,n B,\ B, _, and the corresponding comple-
mentary fragments D b,

Y wa,
ay Dy, |
o)+ a, DB, ,
o+t DB.‘
o+t ta *

A. The A, algebra

The roots y in O,n 4,\4,_ | and the corresponding
complementary fragments D i,y are given in Table II. Note
that the last line is itself a partition of 1 and contributes 1 on
the rhs of Eq. (6.10).

By the induction hypothesis P, (1) =2"""',m </, and
by Eq. (6.10)

1-1 I—1

P =1+ P,(1)=14 3 27 1=2"1
i=1

i=1

(6.11)

B. The 5, algebra

Using the labeling
1 2 ! 1—2 1-1
0—0- - =0——0== 0 : B,
2 -2 1—-1 !
0= - -0 O0=x= 0 B, ,

we have the roots ¥ in O,n B\ B, _, and the corresponding
complementary fragments D ﬁ,y given in Table III.

By the induction hypothesis P, (1) =2""!,m </, and
by Eq. (6.10)

-1 I—1

Po)=1+4 F P(l)=1+ 3 271 =2""1 (6.12)

i=1

C. The C, algebra

The proof for C, is identical to that for B, since we can
use the same choice of roots ¥ and the same series D M, with
B replaced by C.

TABLE IV. The roots ¥ in O;,n .D,\D,_, and the corresponding comple-
mentary fragments D ;,r.

Y Dy,
o Dy, ,
a, + o, DD, s
o+ ta_, Dy,
o+, Dy, 4y
o+ ta s, +a D,
a; + -+ 0y, D,

o +t+a_,+a_, +a *
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TABLE V. The roots y in O;,n E,\ E,_ | and the corresponding comple-
mentary fragments D, .

Y D,
Qa, DEI—I
o+, DElfz
o+t ag D,
o + -+ o D,,
al+...+q4 D|A3+AD
a; + -+ oy + D":
o, + 4y Ay D(A,+A)
A, + -+ oy + a3+ a, DA,
a + ot oo D,
o 4oy oo+ oy *

D. The D, algebra, />3

Since D; = A4, the proposition is true for / = 3. Using
the labeling

1 2 -3 =2 =1
0—0- -0——04—001 . D,
2 -3 1-2 =1

0
0- -0——0401 . D,_,

we have the roots y in O,nD,\D,_, and the corresponding
complementary fragments D j, given in Table IV. Hence by
the induction hypothesis and Eq. (6.10)

I—1

PD,(1)=1+1+1+1+22"—'=2’~1. (6.13)
i==3
E. The G; and F, algebras
We note that
ond; =0/, (6.14)
Ondf =D . (6.15)

Hence the sets O;,n G,\4, and O,n F,\ 4, are empty

and
Pe(l)=P, (1)=2""", (6.16)
Po(l)=P, (1) =2, (6.17)
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F.The £, algebras,/=6,7,8

Since E5; = D; the proposition is true for / = 5. Using
the labeling

2

134151—11 .k

0—0—~0—0- ~0—o0 =~ '
2

I-1
- =0
we have the roots ¥ in O,n E,\ E,_, and the corresponding
complementary fragments D M, given in Table V. Hence by
the induction hypothesis and Eq. (6.10)
1—1
Prl)=1+14+14+14242+ 3 20 '=2/""
i=4
(6.18)

We remark that in obtaining Eqgs. (6.17) and (6.18) we also
used

Py 1k + ko) =P (k)P (Ky), (6.19)
which expresses the obvious connection between the parti-
tion function for a semisimple Lie algebra L = L, + L, and

the partition functions for the component algebras L, and
L,

1 3 4 5
E,
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The shape function S (x), which arises in the study of nonlinear diffusion for cross-field diffusion in
plasmas, satisfies the equation S " (x) + Aa{x)S*x) =0,0<x <1, 5(0) =5(1) =0, > 0. In the
cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is
otherwise continuous. Existence of a positive solution to this problem is established.

PACS numbers: 02.30. — f, 02.30.Hq, 52.25.Dg

I. INTRODUCTION

The nonlinear diffusion equation (d /dx)[D (n)dn/

dx)] = a(x)(dn/dt ), 0<x<1 has been used'~ in the study of
cross-field diffusion in toroidal multipole plasmas. In the
equation, 7 is the particle density, a(x) is a positive function
determined by the poloidal field and D (n), the diffusion coef-
ficient, is a nonlinear function of the density. By seeking
separable solutions Berryman' was led to consider the non-
linear eigenvalue problem

S"(x) + Aa(x)S%x)=0, O<x<l,
S(0)=S(1)=0 (1)

for the shape function S. The function S is called a shape
function because in the separable solution S is the factor
containing the spatial dependence. The parameter A is the
separation constant, and a(x) is a positive integrable func-
tion, singular at x = x; and continuous for x#x,.

The purpose of this paper is to prove existence of a posi-
tive solution and at the same time develop a computational
method for the solution of (1). The monotone iterative meth-
ods originally developed by Keller and Cohen* and placed in
the context of ordered Banach spaces by Amann’ cannot be
used for problem (1) since a(x) is singular on (0,1). The pre-
vious results of the authors on this problem as well as the
related results®® on generalized Emden—Fowler equations
require a(x) to be continuous on [0,1]. However, these latter
methods can be extended to the present case by adopting the
Lebesgue integral and allowing (1) to hold almost every-
where on (0,1); that is what will be shown in this paper.

a>0,

Il. EXISTENCE OF SOLUTION: AN ITERATIVE METHOD

Let G {x,£ ) be the Green’s function for u” =0,
u(0) = u(1) = 0 and let Sy(x) = x. Define the sequences

{Sk (x)};o: 1s {Ak}?: . by
/zk=1/fo (1 — £)alE)Ss_ (€ ),

S,lx) = A, f G (€ )alf)S S (EE, 2)

k = 1,2,3,..., where the integrals are taken in the Lebesgue
sense.
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We first show that this sequence is well defined almost
everywhere. The Green’s function is

Ging)= [ =€) xsE

E(l—x), x>§,
so we have

Sl =/tk((1 ) j:ga@)sz,l(g)dg

x| (- Jale IS €)de ) 3)

k = 1,2,3,....5,(x) is absolutely continuous since the indefin-
ite integral of an integrable function is absolutely contin-
uous. Inductive use of (3) shows that the functions

S,, k = 1,2,... are defined and absolutely continuous on
[0,1], and the sequence {4, }_, is well defined.

We will show that the sequences {S, }i_o.{Ax } 7=\
converge to a continuous function S(x) and a real number A
with S, \.§ and A, 4 as k— + «. We will also show that
(4,S)is asolution pair for (1) in the sense that S'(x) is absolute-
ly continuous and Eq. (1) holds almost everywhere.

In the next three lemmas we prove properties of the
sequences {S, (x)};_, and {4, }_, which will be used to
establish the existence of a solution to (1).

Lemma I: Fork=123,.., 5,0 =1

Proof: From (3) and the usual result on calculating inde-
finite integrals of integrable functions we have

s =Ak[£a(§)szl(§)d§—fol al615T € |
@)

almost everywhere. Since the right-hand side of (4) defines an
absolutely continuous function, the discontinuities of ' (x)
are removable. Therefore, as x—0 we have

S (x)—4, Jl (1 —&)al€)SE_(£)dé = 1. We note that

Sy = —Aa(x)S§_ (x)except at the singularity x = x,.
Lemma 2: For k>»1,0<S,(x)<S,_(x),0<x <1 and
O0<A, | <A

Proof: Consider first vy(x) = (S, — S,)(x). We will show
that vy(x) >0, 0 <x < 1, and fo(x) = M “Sy(x) — S,(x) has at
most one zero on (0,1) for any M, O < M < 1. The latter result
is needed for the induction argument to follow.
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Note that v (x) = A4,a(x)S §(x) > 0 except at x = x, (the
singularity), where it is undefined; also v,(0) = 0, v5(0) = 0.
Therefore, vy(x) >0, 0 <x < 1. Considering f;,

J(x) = A,a(x)S §(x) > 0 except at x = x,, where it is unde-
fined and /,(0) = 0, £4(0) = M '/* — 1 <0. Therefore, fo(x) is
zero at most once on (0,1).

For the induction hypothesis suppose
Ve 1 (X)=(Sk 1 — Si)x)>0,0<x < 1and thatf, _,(x)

= M""S, _,(x) — Sk(x) has at most one zero on (0,1) for
any Me(0,1). Since S (x) < S, _; (x), {2) implies that
A1 >Ar Now let v {x) = (Si- — Sk 4, )x) and
fio =M VS, (x) — S, 1 (x). We have v, (0) = v;(0) = 0 and

Uik ) =Sy — Sk 1) (x)

=a(x)[Ax 1 SEx) —ASE_ 1 (¥)]- (5)
The last term in (5) has a zero on (0,1) if and only if
A/ Ak 1)k _ 1 (x) — S ) (6)

has a zeroon (0,1). Since A, /4, ,.; < 1 theinduction hypoth-
esis shows that v;/(x) has at most one zero on (0,1). Moreover
(5) shows that v} (x] is positive near x = 0. Thus we have
v (0) = v, (0) = v (1) = 0, v{(x) > O for x near zero and vy(x)
changes sign at most, once on (0,1). Therefore, v, {x) >0,
O<x<l1,and so S, (x)>S,, (%), 0<x<1.

To show £, has at most one zero on (0,1) we can proceed
similarly. In this case we have

fix)=ax) [, 8% — M1, S%_,(x)],
which has a zero on (0,1) if and only if

(M VA Ay )81 (x) — Si(x)
does. Again the induction hypothesis shows that this term
has at most one zero on (0,1). Now £, (0) = /,.(1} =0,
f1{0) <0, f¢(x)> 0 for x near zero, so f,.(x) has at most one
zero on (0,1).

Lemma 3: There exists a nonnegative continuous func-
tion w(x) defined on [0,1], positive on (0,¢), with .S, (x)>w(x)
for all x€[0,1], and all k.

Proof: Let
X, 0<x<y,
T(x)= [ 7
) —x, I<x<l. 7

Since for k>1 5, (0) = S, (1) = 0, S, (x)>0, S 7(x) < 0 except
at x_, where it is undefined, it follows that

Sy (x)>[|Se |l T (x), where [|S ||, = supoc.c; [Sk(x)|. From
(2),

1
SR> ANSe e f G (. Jal€ )T (€ ),
0
and since 0 <5, (x) < Sy(x) < 1, 0 < x < 1, it follows that
1
1> A lSe L1 f G (x.£ Jalf )T (£ )dE,
0
and thus

(1S 11l <A !
Hence,
—Six)=Arax)S5_(x)

fo G (€ Jalé )T (€ )dE ( ®)

fo G (5. Jalé )T (€ )dE '

<a(x)
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except at x = x,, where both sides are undefined. That is,
thereis a C> O such that S {(x)> — Ca(x), 0<x < 1, x#x,.
Using S, (0) = 0, S,(1) =0, §1(0) = 1, and integrating we
have

S, (x)>x — C fo fo alr)dr dt.

Now let x<x, < x,. Since a(7) is continuous on [0,x,], it pos-
sesses a maximum on [0,x,], say M. Therefore, on [0,x,],
S, (x})>x — CMx?/2. This establishes the existence of w(x].

At this point we have shown that the sequence
{Sk(x)}2_ | is well defined, decreasing and bounded below
by a positive function w(x). Thus from (2)

M(fol (1~ & ate (€ 1 )

so that {4, }{_, is a monotone increasing sequence bound-
ed above; therefore, it is convergent to some number A. Since
the S, (x) are absolutely continuous,

szs;((t )dt } <f |S7(2)|d2.

X1

-1

1Sk (x1) — Sk xo)| =

From (4) and the fact that 0 <4, <4 we have |S(t})|<AJ,
where J does not depend on k. Therefore,

Sk (1) — Sk (x2)| AT |x; — x|

and the sequence {.S; (x)}_, is seen to be equicontinuous.
Thus since 0 < S, (x)<1, & = 1,2,..., we have a uniformly
bounded equicontinuous set of functions; Arzela’s
theorem'® applies and we can assert the existence of a subse-
quence of {S,(x)} which converges uniformly to a contin-
uous function S (x){>wi(x)) on [0,1]. Since the sequence
{S«(x)} is monotone, the entire sequence converges uni-
formly to S (x).

Now we want to show that this pair (1,5) solves (1).
Since the functions 4, G (x,£ Ja(& )S ¢ (£ ) are bounded above
by an integrable function and converge a.e. (as k— + o« ) to
AG (x,£)al€ )S °(& ) we may apply the Lebesgue convergence
theorem to assert that

S =4 J G (€ Jalé )S (€ )dE.

Therefore, using (3) with S, and S _, replaced by § we find

that .S''(x) is defined and absolutely continuous and that
§"(x) = — Aa(x)S*(x)
S0)=S(1)=0.

In fact this last equation holds for all x#x,. So we have

proved
Theorem 1: The eigenvalue problem

S”"(x) + Ada(x)S*x) =0, O<x<]l, 9)
§0)=5(1)=0,
where a > 0, a(x)> 0 on (0,1), and a(x) is continuous except
for an integrable singularity at x = x_, has a positive solution
pair in the sense described earlier. Moreover, it is obtainable
as the uniform limit of the sequence { (4,,S) ) } defined by
Solx) = x,

Selx) = Akfo G (& alE)SE_ 1 (€ME,

a.e. on (0,1),
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A =(£(1 —engIsi_ )

k=12,..,and S, \S, 1, 74, as k—> 0.

Notes: 1. If (4,5 ') is a solution pair to (1), then so is
(Ac' ~ %S ); thus the choice of A, at each step which forced
S 1(0) = 1 is simply a normalization.

2. If a(x) has a finite number of integrable singularities
on (0,1) the theorem still holds.

3. If a(x)=0o0n (0,x,) then the proof of Lemma 3 fails. In
this case, the result of Lemma 3 could be established by con-
sidering the equivalent differential equation formulation of
(2),
0<x<x,

S”(x) = { ’ o
* — Lax)S i (x),
S (0)=8,(1)=0, Si0)=1
In this way it is seen that S, (x) = x, 0 < x < x_, forall k. From

the fact that.S ;/(x)<0, x, <x < 1, we see that a choice for w(x)
is

x, <x<1,
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X, O<x<x,,
wx)=14 x,

(1 —x), x,<x<l.
1—x,

In fact, (4 = 1/(1 — x,)x%,wix)) is the solution to
S+ A6x —x,)S=0,
S(0) = §(1) =0,
S'(0}=1.
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A new method for summation of divergent power series
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A new method for summation of divergent power series is developed. It only requires the
knowledge of the form of both the small and large A-power expansion (4 being the perturbation
parameter) and few coefficients of one of them to yield excellent results. Convergence is proved for
a simple two-level model, and reasonable arguments are given for more complex and interesting
models. The method is quite general and contains some resummation techniques reported
previously as particular cases. The anharmonic, mean square, displacement function, the ground-
state eigenvalue of the quantum-mechanical anharmonic oscillator, and the ground-state energy
of the hydrogen atom in a magnetic field calculated in this way are shown to be of striking
accuracy in the whole range of the perturbation parameter.

PACS numbers: 02.30.Lt, 03.65.Db

1. INTRODUCTION

Perturbation theory is one of the most powerful and
widely extended mathematical techniques in theoretical
physics. Since the majority of physically interesting models
which can be treated in this way lead to divergent series,
much effort was directed to understand the reasons for this
divergence. Furthermore, several summation procedures
were developed and discussed during the last years, the most
commonly employed ones being Padé approximants" and
the Borel transform.?

Frequently, the problem under study leads to two dif-
ferent power series expansions in the small and large A re-
gime (4 being the perturbation parameter), respectively. The
functions obtained through Padé approximants or Borel
transform do not fulfill both series except in a few particular
cases. Several renormalized perturbation techniques were
proposed recently*'® to overcome this difficulty. In general,
these procedures which allow both series to be fitted improve
convergence largely. Notwithstanding, there remains much
to be done in the field of divergent power series, especially
due to the universality of perturbation theory approaches.

During the last years, the search for approximate eigen-
values of parameter-dependent Hamiltonians led to a new
procedure based on semiclassical and variational meth-
ods.'”~?! It consists of approaching the eigenvalues by means
of a variational functional that obeys a differential equation
similar to that satisfied by the exact eigenvalues. The differ-
ential equation is obtained from the virial and Hellmann—
Feynman theorem, '8

In this paper we propose a new way to handle those
problems that lead to two power series expansions, one for
the small and the other one for the large A regime. It consists
in building a suitable functional which satisfies both series.
The procedure, which will be termed the functional method
(FM) from now on, only requires knowing the form of both
series and a few coefficients of one of them to yield highly
accurate results in the whole range of A values. Although the
form of our functional was suggested by the aforementioned
variational functional procedure,'’~>' the method we pro-
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pose here is wholly original, for the point of view is thor-
oughly different, as will be shown later.

Those series which our method can be applied to are
also Padé and Borel summable, but the present procedure
offers several advantages. It is easier to handle and gives us
the proper analytical structure (i.e., the correct power series
in the small as well as large A regime) of the unknown func-
tion that is approximated. Since the functional is built from
the power series directly, the FM can be suitable for prob-
lems which are not associated with a Hamiltonian. This fact
allows the FM to be useful in many branches of physics other
than quantum mechanics. Furthermore, when summing one
of the series, the convergence can be largely improved by
properly adding the main term of the other one, provided it is
known.

In Sec. II we set down the method and show how to
build the functional that approximates some rather general
power series expansions. In Sec. ITI, some previously report-
ed resummation techniques are shown to be particular cases
of (or simply related to) the present method and also to relate
each other closely.

Convergence properties of the resulting functional se-
ries are discussed at length in Sec. IV by way of a two-level
model that exhibits two level crossings in the complex plane.
It is shown that the FM changes the finite convergence radi-
us of the Rayleigh—-Schrodinger series into an infinite one.

In Sec. V the method is applied to more complex prob-
lems that have real physical interest such as the anharmonic,
mean-square, displacement function, the quantum-mechan-
ical anharmonic oscillator, and Zeeman effect for the hydro-
gen atom. In all cases results are in excellent agreement with
the exact (numerical) ones and far better than those obtained
through the original power series. The FM is also more accu-
rate than other resummation techniques.

Even though we are not able to prove rigorously in
which cases the FM series converge, we will reasonably show
that our procedure is very suitable for obtaining accurate
results from divergent power series.

Finally, some other problems which can be handled in
this way are briefly discussed in Sec. V1.
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il. THE METHOD

Let us suppose that we are interested in calculating, as
exactly as possible, the values of an unknown real function
E (A), which can be expanded as

Ed)= 3 E A" (2.1a)

ER)=A%ed)=4" S A%, a<O,

i=0

(2.1b)

when A is small and large enough, respectively (@ and S are
real numbers). In general, the convergence radii of these se-
ries are not known, and they may be finite, infinite, or zero.
We do not make any assumption about this. Even when the
convergence radius of one of these series is infinite, results
are not good enough in the whole range of A values, for the
series is to be truncated up to the last known term.

In this paper we will show that excellent values for E (4 }
can be obtained by means of the functional

F=A4/¢+¢ +AdBA,q), (2.2)

where A is a real constant, g is a new variable, and B (4, g)isa
function that will be determined later on.

The form of the functional (2.2} is suggested by previous
works on a variational-semiclassical approximation to the
eigenvalues of anharmonic and coupled oscillators.'”! In
this scheme, 4 /¢° plays the role of the kinetic energy and the
remaining of the rhs in (2.2) is a sort of expectation value of
the potential energy. But this interpretation is nonsense here
because we do not suppose that E {4 ) is an eigenvalue of a
given Hamiltonian operator.

The change of variables g = A4 ~ '+ 2y allows us to
write (2.2) as

F=A""*24 /w4 A~y + w'B(A, q)). (2.3)
If Fis to fulfill {2.1), then it is necessary that
s= —(2/B)a+B), t=(2/B)1-58) 2.4
and, besides, B (4, ¢) has to be able to be expanded as 4 ¢
power series. To achieve this, let us consider the equation
¢+ Abg =1, (2.5)

where b is a real parameter that allows convergence to be

improved, as will be seen later on. When Ab > 0, there is only

one real root ¢(4 ) of (2.5), which is a continuous function of A

for all A values. This equation plays the role of the stationary

point condition in the variational functional method.'”-*!
If {2.5) is written in terms of w,

A 62 L 2 (2.6)
we see that the two variables

u=2¢* %, v=g"? 2.7
are bounded:

uA=01=0, wd— o)=1/b,

vdl=0=1, vd— o)=0,

and, furthermore, they can be expanded in A- and A “-power
series when A is small and large enough, respectively. Then,
good choices for B (4, g) are
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(2.8a)

(2.8b)

where the coefficients b, and b { are adjusted in order to
fulfill (2.1).

Our method consists in approaching £ (4 ) by means of
Eqgs. (2.2) and (2.5) (the last equation fixing the proper g val-
ue). The coefficients b, are best adjusted through Eq. (2.1a)
because the term b, only yields A / terms with j>/. In this
way, the addition of the M th term to (2.8a) does not modify
the coefficients b; (i < M — 1) computed previously. By the
same reasoning, Eq. (2.8b) is found to be better in order to
allow F to fulfill (2.1b).

When [ and «a are not integer numbers, and negative A
values are allowed, the proper form of (2.1b) should be

EQ)=[41" 3 elA]%
but this fact does not require changing the form of Egs. (2.2)
and (2.5).

In order to obtain a general expression for the constant
A and the coefficients b, in terms of the original power series
coefficients E,, let us write A and F as functions of u,

A = u(l — bu)"*, (2.10)
(1 —bu)=P*F=A+1—bu+ uB(u). (2.11)
If weintroduce (2.1a)in (2.11) (with F = £ ) and expand each
term of the resulting equation in powers of », we obtain, after

equating the coefficients of #' on both sides of (2.11), the
following recursion relationship:

[ ) Ai—k —
3 3 (—pyer (Vo (TE) g
i=0K=0 k =7
=4+ 1)51',0 +(b;_, -b6i~1,0)(1 _61‘,0)’ (2.12)

where 8, ; is the Kronecker delta and ({) is the coefficient of u’
in the Taylor expansion of {1 + u)®. The zeroth-order equa-
tion [i.e., i = 0in (2.12)] gives us an A4 value that is (a, 8 )-
independent,

A=E,— 1. {2.13)

Coefficients b | are determined in the same way. In this
case, we have
A=(1—uv)v"/b, (2.14)
v P F=(1—vWfe/bP=A+v+(1—v)B)/b (2.15)
After expanding each term in (2.15) as a v-power series, we
obtain another general recursion relationship:

j=0K=0
=A6i,0 +5i,1 + {b; _bLl(l _ai,O)}/b' (2-16)

The zeroth-order equation links 4, b, and e, together:
by=>b'" e, — Ab. (2.17)

Therefore, if we place (2.13) into (2.17), b is thoroughly

fixed in terms of e,, b, and E,. The proper b value is chosen in

order to achieve highest convergence rates. This fact will be
discussed at length in the subsequent sections.

(2.9)
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In all nontrivial problems, we only get a finite number
of terms in the series (2.1a) and/or (2.1b). So, we have to
truncate the expansions (2.8} up to the highest-order coeffi-
cient we can calculate from (2.12) and (2.16). For this reason,
we will have, in a general case, two different approximate
expansions for B,

M

By= S b, (2.18)
i=0
M .

Biy= Y biv. (2.19)

i=0
In problems of actual physical interest, it occurs fre-
quently that one knows e, in addition to the first M + 1 coef-
ficients E,. In such cases, we can fix by,b,,...,0,, through
(2.12) and then b,, , , by allowing the resulting functional to
fulfill (A ~PF)A — ) =e,; i€,

M
by, =bM* [b*—ﬂ(eo—Abﬁ)— S b b A"].
i=0
(2.20)

As we reasoned before, in practice it is better to use
(2.18) and (2.19) to deal with (2.1a) and (2.1b), respectively.
But, since both B,, and B ;, are able to be written as A- or 4 *-
power series alternatively, then both expansions (2.1) can be
taken into account by means of either (2.18) or (2.19).

Were we to know e, in the example that led to (2.20), we
would be able to take this coefficient into consideration too
by adding a new term to (2.18). But this addition would
modify the b,, , , value, for b,,, , and b,,, , would be cou-
pled in two equations. In general, this way does not lead to
better results than those obtained by taking into account e,
only and so, we will not follow it in this paper.

Itis clear that the functional (2.2) and Eq. (2.5) are thor-
oughly determined by means of the real numbers « and 8
[that is to say, by means of the series (2.1)] without reference
to any sort of Hamiltonian operator. Thus, the method is so
general that it can be applied to a wide variety of problems in
many branches of physics whenever they lead to power series
expansions of the form (2.1). This will be shown in the follow-
ing sections.

Another very important feature of the FM is that it
makes clear a relation between the variational functional
method'’~! and several rearranged and renormalized petur-
bation series.* '

lli. RELATION TO OTHER TECHNIQUES OF
RESUMMATION OF POWER SERIES

Since divergent power series appear very frequently in
many fields of physics, several procedures were developed
during the last years to sum them. Most of these methods
were applied to the quantum-mechanical anharmonic oscil-
lator and the ¢ **-model field theory in order to test their
performance. Good reviews of some interesting divergent
series and several rigorous mathematical results about them
can be found in Refs. 22 and 23. For example, Padé approxi-
mants'? and the Padé-Borel method® were applied to the
Rayleigh-Schrédinger (RS) perturbation series for the quan-
tum-mechanical anharmonic oscillator which is known to be
divergent for all A values.?* This one-dimensional model
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gives rise to two power series like (2.1) with S =} and
a= —%

But it is obvious that neither the Padé approximants nor
the Padé-Borel method can give us, in the general case, the
correct analytical A dependence in the large A regime [see
(2.1b)] when they are applied directly to the A-power series
(2.1a). The only case they lead to the proper behavior is
a = — | and S an integer.

Due to this difficulty, several alternative techniques
were developed to treat some particular problems. For ex-
ample, the variationally rearranged perturbation theory,**
the geometric approximation (GA),”® partition tech-
niques®*® and their renormalization,®'® generalized Wick
ordering of Hamiltonians,'' order-dependent mappings, '
and rearranged Hamiltonians written in second-quantiza-
tion formalism'>~'® were proved to be very useful. All these
procedures have succeeded in summing some particular di-
vergent series or, at least, in diminishing their divergence
rate largely. Convergence was rigorously proved for very few
cases only.!!:12

Though the procedure described in Sec. II is reminis-
cent of the variational functional method,'”~?" it is only
based on the analytical structure of the series (2.1), and it is
wholly original as far as we know. Then, it might be profita-
ble to know if, under certain conditions, the FM can be relat-
ed to other existing techniques such as those summarized
before. We will try to find some of these connections in the
remaining of this section.

A, Geometric approximation

Let us suppose that a Hamiltonian H can be written as

H=H,+ AV, (3.1)
where the eigenvalues and eigenfunctions of H, are known,
H\W,=EW,. (3.2)

In the usual Rayleigh-Schrodinger perturbation theory
(RSPT), the eigenvalues E and eigenfunctions ¥ of H are
expanded as

E= :ZOE,./I", ¥ = ;0 WAl (3.3)

The convergence of the eigenvalue-power series can be large-
ly improved by way of the GA that consists of rewriting H as

H=H,+V', Hy=upH, V' =AV+(l—pu)H, (3.4)

Since the eigenvalues and eigenfunctions of H, are known,
then the RSPT can be applied to this new problem without
difficulty and the first perturbation corrections E ! are
Eo=pE, E|=E +(l-p)EJ/i, E;=E)/u,
Ej={E;+ u—1)E/A}/u’ (3.5)
It is customary to choose ¢ in order to make £} null (i.e.,
according to Wigner’s rule)’25:

u=1—A1E,/E,. (3.6)

With this u value, the rearranged power series (up to third-
order) equals the (2/1) Padé approximant built from (3.3):
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E~E} +E|A+E}A2
== O+A {E1+AE2/(1 —AE:;/Ez)}. (3.7)
If the integral S; = (¥,|¥,) is thought to be a variable

parameter, then all perturbation terms E; (i > 1) will depend
on it. Therefore,

I
EN= Y E(5)A" (3.8)
i=0

Since the energy eigenvalue E does not depend on S, then a
good choice for it will be

EY)
When I = 3, this equation leads to

S, = — Ey/E, = (u— 1)/A.

This is a very interesting result, which poses a connection
between a variational procedure and a partition technique.
Other choices for S| correspond to different partitions of the
Hamiltonian H.®

Equations (3.7) and (3.10) show that the stationary-
point condition (3.9) (with I = 3) gives rise to the change of
variables A — A4 /(1 + AS)), where §, is given by (3.10). On
the other hand, the variable we proposed in Sec. II was
u=A/(g "+ Ab), which clearly suggests that our method
should equal the GA when s =¢;i.e, whena = — 1 [see
(2.4)). Besides, our parameter b seems to play the role of the
integral S,. In order to verify this, let us consider Egs. (2.2),
(2.4),(2.5), and (2.18) with f = — a@ = 1 and M = 2, which
lead to the following functional:
F=A/¢@+14+Aby+A%.* + Abyq*, ¢ =1/
(1+4b),

where
A=E,—1,

=0. (3.9)

(3.10)

(3.11)
bo=E,—Ab, b,=E, b,=E,+bE,.

(3.12)
Since the exact function E (A ) is b-independent, then it seems
reasonable to determine the best b ( = b *) value according to

OF ib=b%=0. (3.13)
ab

Thus, we obtain
b*= —E,/E,, (3.14)

which together with (3.11) and (3.12) gives us (3.7) exactly. It
is interesting to note that the stabilization condition (3.13)
leads to b, = 0 and, besides, that b * is A-independent. This
last result seems to hold in a general case, as we will see later
on.

Previous discussion shows that the GA can be thought
of as a particular case of our FM when S = — a = 1. Fur-
thermore, since the functional (2.2)—(2.5) was built in order to
fulfill both power series exactly, then we can conclude that
the GA can only give us the correct A dependence for E when
B = — a = 1. For example, it is very useful to deal with
Coulomb interaction potentials.”*” Also, Euler’s method,?®
which is often used to continuate Taylor expansions analyti-
cally, is a particular case of the FM when = —a = 1.

Recently, Bhattacharyya®® has proposed a generalized
Euler’s method to deal with power series expansions, but the
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change of parameter he has discussed is quite different from
ours. Besides, his procedure does not take into consideration
the small and large power series in those cases that admit
them.

Before going forward, it might be profitable to discuss
how to determine the best b value (b = b *). If the series rear-
ranged through the FM converged for a given A value, then
their plots vs b (A4 fixed) should probably possess a plateau,
the extension of which should increase as M in Eq. (2.18)
increases. Furthermore, the smaller the A value, the larger
this plateau. Thus we are forced to find a suitable plateau
criterion.

Equation (3.13) exhibits a very attracting feature: the b *
value seems to be A-independent. This fact leads to a surpris-
ing conclusion. Let us suppose that M — 1 coefficients b, [see
Eq. {2.18)] were determined according to (2.12). Therefore,
the functional can be expanded in A-power series as

oo

S F At

i=M4+ 1

M
F= ZEi/li+ (3.15)
i=0
If Eq. (3.13) held for all A values, then all F;’s (i>M + 1)
should be stable for the same b * value,

o, b=b*=0, i>M+1
—— = =, 1 .
b

{3.16)
For example, if we expand (3.11) up to Z{4 %), we obtain
F,= — (E,b? + 2E;b), which is stable when

b=0b*= — E,/E,. Equation (3.16) is more suitable than
{3.13) to compute b * because F; is always a polynomial of
degree /.

Usually, F has no stationary points for some M values,
and the plateau has to be determined by another way. A good
plateau criterion is always necessary in order to find the best
mapping parameter,’"'? and we can obtain it, for example,
by minimizing the absolute value of the last coefficient in the
expansion. Also, we can fix b * through an inflexion point
condition

O*F

<57 Ab=0%=0,

(3.17)

but in this case b * is found to be A-dependent. Throughout
this paper, b * will be determined according to the two fol-
lowing rules:

(1) Stationary point: We will choose the stationary point
with the smallest absolute value of the second derivative.
The b * value obtained in this way is A-independent.

(ii) Inflexion point: If there were no stationary points,
we would choose the inflexion point with the smallest abso-
lute value of the first derivative. The b * value obtained in this
way changes within a finite (and always small) interval when
A runs from 0 to oo. These rules can be summarized in the
following mathematical expression:

G(b*)=min G (b),

(6%
0*F
db?
where {b }*} means the set of all stationary or inflexion
points. The coefficient |4 | of the second derivative was intro-

, (3.18)

mm=}%i+w|
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duced to avoid too large & * values, for they do not lead to
accurate enough results.

Though we are unable to rigorously prove that the sta-
tionary points (3.13) are A-independent, this assertion is sup-
ported by a careful numerical search on several quite differ-
ent examples, some of which will be discussed later on in this

paper.

B. Scaling-variational method

Let us suppose that we are interested in the ground-
state eigenvalue of the Hamiltonian,

. d
H=H0+AI.X|I, H0=p2+|X|s, p=—lzx—, (3198,)

and that we know a normalized eigenfunction ¢ (x) of H, with
eigenvalue E,,

Hyp =Ey. (3.19b)
Then, a good approach to the lowest eigenvalue £ of H can
be obtained with the upper bound

E(@)=(d,| Hp,)>E, ¢,=a""¢(ax). (3.20)

The virial theorem for (3.19) states that

(¢ 1xI°¢) =2Ey/Is +2) =2(8 | p°¢ }/s. (3.21)
Therefore,

E(a)=23E/(s+2)+5sa °Ey/(s+2)+AE,a™ ",

E = {(¢]|x['d). (3.22)

In this simple approximation scheme, the most accu-
rate approximation to E is given by the lowest E (@) value.
The minimum condition JE (a)/da = 0 leads at once to the
best a value,

a " 4 Als+2)tE, a= " Y(2sEy) = 1. (3.23)

The scaling-variational method just described here is also
suitable for estimating excited-state eigenvalues because it
gives us the proper (4,n) dependence of them {see Refs. 30
and 31 and references therein.)

On the other hand, the FM leads to

F=(E,— 1)/¢* + ¢ + Aboq', (3.24a)
g4+ Abg' T =1, (3.24b)

in the first-order approximation [i.e., M = 0 in (2.18)]. From
(2.12) it follows that

bo=E, +(s+2—2Ey)b/(s+2)

Thus, the three first Taylor expansion terms for F are
F=E,+EA+FA?+ .,
F,=sEb?*/(s+ 27 —tE,b/ls +2).

Since it is rather cumbersome to obtain a root of (OF /
b )(b = b *) = 0, we will obtain b * by way of (3F,/
db )b = b *) = 0, which leads to

b* =t(s+2) E,/(25E,).

(3.25)

(3.26)

(3.27)

When this result is replaced in (3.24b}, we obtain (3.23) exact-
ly with ¢ = 1/a. So, we have proved that the FM also con-

tains the scaling-variational method®®>! as a particular case.
It is found that (3.27) is also a stationary point of F for all 4
values, according to what was argued before.
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C. Other partition techniques
The eigenvalues of the 2k-anharmonic oscillator

H=p> +m’x*+Ax*, p, = — idi’ (3.28)
X

can be expanded in power series like (2.1) witha = — 2/

(k + 1) and B = 1/(k + 1). Equation (2.10) gives rise to the

following change of perturbation parameter:

A =u(l —bu)~*+172 (3.29)
This is exactly the same transformation proposed by Dmi-
trieva and Plindov,>® who determined b according to the
virial theorem.

The change of variables x = (1 — bu)'/*y allows us to
write (3.28) as™¢

H=(1—-bu)?H=p2 +y* +u(y* —by).  (3.30)

Since the eigenvalues of H, = p? + y* are known, then the
RSPT can be applied to (3.30) without further difficulty, and
we obtain the eigenvalues of H as u-power series

E=(1—bu~" 3 E(b)u,

i=0

(3.31)

where E, are the perturbation corrections to the eigenvalue
Eof H.

Dmitrieva and Plindov’s method®*® is suitable to deal
with any Hamiltonian operator of the general form
H=T+ V,+ V,, where V, and V, are homogeneous func-
tions of the coordinates, provided the eigenvalues and eigen-
functions of T + V, are known.

A careful examination of the partition techniques dis-
cussed by Pascual,* Killingbeck,” and Austin and Killing-
beck'? shows that they are closely related to the method of
Refs. 5 and 6 and that they also lead to a mapping parameter
like (3.29), though these authors did not make it explicit.

The FM applies to all problems that can be treated by
means of the aforesaid procedures and to other ones that are
not related to a Hamiltonian operator. Therefore, the pertur-
bation techniques described in Refs. 4-6, 9, and 10 may be
clearly thought to be particular cases of the FM.

D. Generalized Wick-ordering method

In a very interesting paper, Caswell'! extended Wick-
order concepts that are well known in field theory and devel-
oped an approach to the eigenvalues of anharmonic oscilla-
tors and double well potential problems related to them.
Caswell’s method will be briefly discussed here, using the
quartic anharmonic oscillator [k = 2 in (3.28)] as an exam-
ple, in order to show that it is a particular case of our FM.

The Wick-ordered Hamiltonian :H: with all creation
operators to the left of all anihilation operators is related to
H [(3.28)] by

H=:H +M-34/2M?%, (3.32)

where the renormalized mass M is connected with the origi-

nal oscillator mass m through
M?*=m?+31/M. (3.33)

The RS perturbation series
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@ l i
E=m E; (————) 3.34
,-;o e (3.34)
can be rearranged as
E=MY E¥ (1%) (3.35)
i=0

where the new expansion coefficients E  are determined in
such a way that (3.35) leads to (3.34) when M is expanded in
A-power series. Because of (3.33), the variable 4 /M * remains
bounded for all A values.

It is not difficult to prove that Caswell’s perturbation
series (3.34) and those obtained by Pascual* and Dmitrieva
and Plindov>® are exactly the same when E is the ground-
state eigenvalue of the quartic anharmonic oscillator.

Caswell'! generalized the Wick-ordering method just
described by replacing (3.33) with

M2=m*+IA/M, (3.36)

where the “mass shift” / is determined in order to improve
convergence. Caswell'! proposed the stationary point condi-
tion

9 [ lim A _”3E‘”(M)] (I=1*=0,

dl -«
where E ")(M )is the sum (3.35) up to the I th term, in order to
obtain the best / ( = / *) value. Frequently, Eq. (3.37) leads to
complex roots only. In such cases it is necessarily a good
criterion to choose / *.!!

The Wick ordering does not lead to series like (3.35)
when it is directly applied to any anharmonic oscillator with
k > 2, but Caswell could generate them by resorting to di-
mensional arguments.

We will now prove that our FM contains Caswell’s
method as a particular case. The change of variables
z = ¢’ ** transforms (2.2) and (2.5) in

(3.37)

z+Abz= V=1, (3.38)

F=zP" > d;(Az =%, (3.39)
i=0

whered, =4+ 1,d, =b,— b,andd;, =b,_, (i>1). For

the quartic anharmonic oscillator model discussed before

{@ = — 2/3), Eqgs. (3.38) and (3.39) equal (3.33) and (3.35),

respectively, when

z=m*/M?, b=I1/m*, EM=m*"'d,. (3.40)
Therefore, the FM and Caswell’s procedure yield identical
results whenever the parameters / and b are determined ac-
cording to the same criterion. In Sec. V we will compute the
ground-state eigenvalue of the quartic anharmonic oscillator
for different A values using Caswell’s method and the FM
with (3.37) and (3.18), respectively. Results will show the
influence of the plateau criterion.

When considering the anharmonic oscillator problem,
the zeroth-order Hamiltonain can be defined by several dif-
ferent arrangements of the creation and anihilation opera-
tors'>~1¢ unlike the Wick-ordering one. It was recently
shown?? that one of these partitions'® leads to an RS series
with infinite convergence radius.
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E. Order-dependent mappings

Seznec and Zinn-Justin'? made a numerical test of a
summation method based on an order-dependent mapping
which poses a generalization of the techniques that are
usually employed to analytically continuate power series
outside their convergence radii.”® The procedure was ap-
plied to some models of interest in field theory and to other
ones closely related to the quartic anharmonic oscillator.'? It
consists of changing the perturbation parameter A into an-
other one g through a mapping

A=pg(l—g) ", (3.41)

where p is a variational parameter introduced to minimize
the error of the truncated series. By way of a partition of a
Hamiltonian operator like those discussed in subsections
III A and III B, Seznec and Zinn-Justin'? found that s = 3/
2 is a good choice, but they considered other s values too.

This technique is closely related to the FM for the map-
ping (3.41) coincides with (2.10) exactly when p = 1/b,

g =bu,ands = — 1/«a. Besides, the FM requiresa = — 2/
3 for the quartic anharmonic oscillator. Also, the alternative
mapping (2.14) we proposed in Sec. II equals (3.41) when
p=1/b,g=1/(1 —v),and s = — 1/a. Therefore, we see
that the rearranged power series proposed by Seznec and
Zinn-Justin'? and by the FM are one and the same whenever
s is properly chosen and p and b are determined through
identical criteria.

Another redefinition of the perturbation parameter was
recently proposed by Vainberg et al.**> and Popov and Wein-
berg®* together with Padé and Borel-Padé methods, respec-
tively, in order to improve the convergence of the perturba-
tion series for screened Coulomb potentials.

To make the discussion clear, let us consider the funnel-

like confining potential:
H(Z A)=p*—Z/r+Ar, (3.42)

which is of great interest in quarkonium physics.**> From the
well-known Symanzik’s theorem?

H(Z,A)=A*PH(ZA ~'31), (3.43)
Vainberg et al.*® obtained the following mapping:
AT=A(14y1) 13, (3.44)

which transforms the original RS series into a 4 "-power ex-
pansion.

The change of the perturbation parameter (3.44) is not
as good as those discussed in previous subsections for 4 " is an
unbounded parameter. This fact makes it necessary to resort
to (N + 1/N ) Padé approximants in order to obtain reasona-
ble results when A is large enough. Furthermore, though
these approximants behave properly as 4 2’3 in the large A
regime, they do not give rise to the correct 4 ~'/>-power se-
ries [see (3.43)] because A ' cannot be expanded in such a
series.

On the other hand, Popov and Weinberg** applied the
Borel-Padé method to the A ' expansion and chose ¥ in order
to remove the nearest singularity of the Borel transform to
infinity. Although this procedure yields better results than
the RS series itself, the approximate function obtained in this
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—1/3 expansion in the

manner does not lead to the proper A
large A regime.

The FM shows that in this case the correct mapping
should be [cf. (2.10)]

A=u(l —bu)~>. (3.45)

IV. APPLICATION TO A TWO-LEVEL MODEL

At present we cannot prove to what extent the FM im-
proves convergence of a general power series, but in this
section we will try to give convincing heuristic arguments
that the method is useful to enlarge convergence radii. Todo
this, let us consider a simple two-level model that was pre-
viously studied by other authors®3%>” because it exhibits a
level crossing which is of great importance in atomic and
molecular physics.>¢’

The model is posed by the symmetric matrix

3172 24 )
24 4-34/2)"
where A is a real parameter. The two eigenvalues of H (4 ),

E_(A)=2+ 2517 — 241 + 16)', 4.2)

are analytic functions of A within a finite domain determined
by the branching-point singularities 4, = 12/25 + 16i/25.
The matrix elements were chosen to obtain a strong coupling
between the two eigenvalues that is given by a level crossing
in the complex plane. The convergence radius of the Taylor
series for the lower level E_(A) = E (1) [like (2.1a)] is

R = [A,| = 4/5. (We will not consider here the other eigen-
value explicitly for the same qualitative conclusions apply to
it.)

HQA)= ( (4.1)

The Borel method consists in calculating E (4 ) by means
of the transformation®?®

EAd)= f glAz) e~ *dz, (4.3)
0
where g{z} obeys the following Taylor expansion:
= E 72
glz2)= — (4.4)
i=0 &

In the present case, the region of Borel summability (Borel
polygon)is A (R = |4,|*/Re(d,) = 4/3.7
The appropriate functional to deal with the A-power

expansion for (4.2)is (A= —a=1; s=1t=0)
F(A)=A4/q+ 1 + ABy(q), (4.5a)
where

Bulg)= f‘, b o', u=Ag¢=A/(1+A4b). (4.5b)

The branching-point singularities of E (4 (1)) in the u-com-
plex plane are found to be
u, = u(d,) =(12 + 16b + 16i)/(16b* + 24b + 25).

(4.6)

Since E' (A — o) — oo, then the mapping A (1) introduces a

poleu, = 1/binto E (1 ). The two branching points lie on the

circle of radius R ',

R’ = |u,| = (400 + 384b + 256b%)'/2/(25 + 24b + 16b?),

4.7)
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in the u-complex plane. Therefore, the u-power series will
have, for real # values, the following convergence intervals:
) —R'<u<R’or —R'/(1+bR")<A
<R'/(1 —bR") if R'<1/]b|;

(i) —1V/|b|<u<l/|b] or —0w<d<l/
26| if R'>1/]b]|.

When b = — 25/24, the equality R’ = 1/|b | holds and at
this point the transition from real finite convergence inter-
vals (b> — 25/24)toinfinite ones (b < — 25/24) takes place.

The A and b values which allow the u-power series to
converge are shown in Fig. 1 {region marked by hatching). It
is clear that if b is chosen properly, the functional F should
give us excellent results for A <0. We have studied several
functions with a couple of conjugate branching points A,

= A, 1+ i, and in all cases the b values that fulfilled |u, |

= 1/|b | gave rise to u-power series which converged in
(— o,4;)and {1;,0) when 4, >0 and 4, <0, respectively.
Numerical calculation for more complicated problems (such
as those discussed in Sec. V), suggests that the convergence
radii of the u-power series are much larger than those of the
A-power series.

The two-level model just considered is suitable to com-
pare the performance of the FM with those of the Padé and
Borel-Padé methods for the (VN + 1,N ) approximants behave
properly in the large A regime (this is due to the fact that
B=—a=1)

The fifth-order A-power series for the ground-state level
EA)=34/2—A%=31%4 —51%/16 + 941 °/64 + -..

{4.8)

can be rearranged in a u-power series with the following
coeflicients:

A= —1, by=3+b, b= —1,
by= —b2—3b/2—5/16,
by= —b>—9b%/4— 15b /16 + 9/64. (4.9)

When orders up to the third one are only included, the FM
gives

F,b)={A%3b%/2 —2b—3/4) + A%3b— 1)
+34/2}/{1 + 262 + A%}, (4.10)

which has a stationary point b * = — 3/4. For this particu-
lar value, the functional (4.10) leads to the (2/1) Padé approx-
imant

FA)=(31/2)(1 — 174 /12)/(1 — 34 /4), (4.11)

according to the discussion in subsection III A (it should be
noted that b * = — E,/E,). It is a very striking fact that this
b * value leads to the largest |u, | value [|u, |6 = — 3/
4) = 1] and that u, has no real part [u, (b = — 3/4)= 1 i].
Figure 2showstheplots F (A = — 1/2,b)vsbwherethe
functional values were computed by means of Egs. (4.5) and
(4.9) with M = 2,3,4. Results clearly show that the plateau
becomes larger as M increases. When M = 4, the functional
is almost a constant for all b values within the interval
(—2,—1/2).
We have calculated E (4 ) approximately for different A
values by means of the functional (4.5) with M = 2,3,4. Re-

by= —b—1

3
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sults are shown in Table I together with those obtained
through the fifth-order perturbation series and the exact val-
ues. Even the third-order functional (M = 2) is much more
accurate than the fifth-order Taylor expansion in almost the
whole range of A values.

The fifth-order functional (M = 4) exhibits two station-
arypoints: 5 * = — 3/4andb* = — 1.61, thelast onebeing
in accord with the plateau criterion discussed in Sec. I1I.
Both b * values lead to very good results which are compared

FIG. 1. Convergence region in the A-b
plane for the ground state of the two-
level model (4.1).

with those obtained through Padé and Borel-Padé methods
[(3/2) approximants in each case] in Table II. Our functional
with b * = — 1.61 is as accurate as the (3/2) Padé approxi-
mant, and both sets of FM results are better than Borel-Padé
ones.

In general, the FM is more exact and much easier to
apply than the Borel-Padé method because the integral (4.3)
has to be calculated numerically. [It must be kept in mind
that in this approximation g{Az) is written as a Padé approxi-

4\
-0.89}
-0.90
-0.91}
— FIG. 2. Ground-state of the two-
= -0.92} levelmodel(4.1). F(A = — },b)vsb
.-|~ ) for different degrees of approxima-
exact tion: ( ) third-order; (- - - - - - )
, ¢ fourth-order; {- - - - - - ) fifth-order.
v -093f
=
Lo
-0:94+
-0.95}
-0.96|
1 1 1 >
-3 -2 1 b
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TABLE I. Ground state of the two-level model (4.1) for several A values.

—A —E® _Eb —E*© _Ed — [ exact
0.5 0.9318 0.9275 0.9267 0.9302 0.9262
1.0 2.0714 2.0432 2.0367 2.2031 2.0311
1.5 3.3088 3.2368 3.2195 4.6186 3.2022
2.0 4.6000 4.4694 4.4375 10.5000 4.4031
2.5 5.9239 5.7243 5.6753 24.2212 5.6199
*Third-order functional calculation, b * = — 3/4.

® Fourth-order functional calculation, 5* = — 5/4.

°Fifth-order functional calculation, b * = — 1.61.

4 Fifth-order Taylor expansion.

mant.] Furthermore, when 3 is not an integer or a # — 1,
Padé approximants do not behave properly in the large A
regime unless a sort of renormalized power series is used. As
we saw before, the techniques employed to obtain these ex-
pansions are not general enough to handle any power series
like (2.1), and, besides, they are particular cases of the FM.
Therefore, the FM seems to be the most useful way to deal
with this sort of power series.

The FM has another very important advantage: We can
introduce a new coeflicient b5 in order to satisfy
(JA|7'F)A — o) =e, = — 5/2. Thiscondition leads to [cf.
(2.20)]

s[5 : _,]

bs=1b { 2M|+b i;}b,b .
The functional obtained in this way gives us far better results
as shown in Table II. In general, the addition of a coefficient
to B,,(q) that allows the functional to behave properly in the
large A regime improves convergence markedly.

(4.12)

V. APPLICATION TO SIMPLE MODELS OF PHYSICAL
INTEREST

A. The anharmonic, mean square, displacement
function

We said before that by this time we are not able to rigor-
ously prove if our FM leads to convergent series or not.
However, in Sec. IV we gave reasonable arguments that the
FM may be a powerful tool to increase the convergence radi-
us of a given power series. In this section we will study three

TABLE II. Ground state of the two-level model (4.1) computed through
different approximation methods.

) _E® _E® _E* _ g _ gt
0.5 32223 0.9257 0.9260 0.9263 0.9262
1.0 igiz: 2.0216 2.0283 2.0326 2.0311
LS ;:17;2 3.1604 3.1915 3.2059 3.2022
2.0 :ig‘;‘; 4.2978 4.3793 4.4097 4.4031
2.5 22_1;(3) 54174 5.5783 5.6293 5.6199

* Fifth-order functional. First and second value for each A correspond to
b*= —3/4and b* = — 1.6, respectively.

*(3/2) Padé approximant.

¢ Borel-Padé method with the (3/2) Padé approximant for g(4z) [see Eq.
(4.3)).

¢Fifth-order functional with Eq. (4.12).
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physically interesting problems, the first two ones being
known to lead to RS series with zero convergence radii. Our
goal is to show more clearly that the FM is far more general
than the procedures described briefly in Sec. III by applying
it to quite different problems.

Great interest has been recently shown in the anhar-
monic, mean-square, displacement function®**2

(x?) = J:o x?exp{ —B'V(x)] dx

x(f: exp{ — B’V (x)} dx)_l, (5.1a)

where

B'=1/(kT), V(x)=k,x*+ kx*, (5.1b)
for it has been proved to be useful to interpret a wide variety
of experimental data®*!*? such as the dynamic response of
the order—disorder and displacive ferroelectrics above the
Curie temperature*' or the temperature dependence of the
isochoric dielectric polarizability.>**?

Morita and Frood*® have shown that the function

EA)=2B"k,{x*), A=ky/(B'k3) (5.2)
can be expressed in the form of a continued fraction
ERy=1/14+34/1+54/1 +T4/1 + . {5.3)

This problem is quite appropriate for our purposes because
the A-power series

Ed)=S EA‘=1-31+242°
i=0

— 29743 + 48964 * — 100,2784° + .. (5.4)
is strongly divergent for all A values. It is very easy to con-
vince oneself that this is true by noticing that both integrals
in (5.1) diverge so long as A takes negative values no matter
howsmall |4 | is. Besides, though the continued fraction (5.3)
converges, it is not useful to calculate E (1 ) in the large A
regime for too many terms are required.

The function E (4 ) can also be expanded in powers of
/{ —1/2 40,

E(ﬂ):ﬁ,_l/z i ei/{ —i/2

i=0
=24 ~12{0.675 978 2399 — 0.271 526 70964 ~/2
+0.077 221 48634 !
—0.015 566 64454 —3/2
+ 0.001 780 083 544 ~2 — ...} .

Taking into account the leading term of this series (i.e.,
e, A ~'/%), Booth* suggested approximations of the form

(5.5)

E(A)~ i a;A + a3,

i=0

(5.6)

where the 27 parameters o, and a, are determined according
to

@ CEu 0=k, i=o.m—1, (572
oA’
lim A'2E(A)=e,. {5.7b)

A— o

In this way, Booth*° could obtain quite good results for small
and large enough A values. However, his formula fails in the
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TABLE III. Calculation of the anharmonic, mean square, displacement function with different approximation levels.

A E® Eb E° E eact Ed E* Ef
1074 0.999 5820 0.999 7020 0.999 7015 0.999 7002 0.999 7002 0.999 7002 0.999 7002
1073 0.995 914 0.997 041 0.997 036 0.997 024 0.997 024 0.997 024 0.997 024
1072 0.965 671 0.972 257 0.972 222 0.972 144 0.972 140 0.972 144 0.972 144
107! 0.812 166 0.817 663 0.817 621 0.817 561 0.817 279 0.817 480 0.817 552
1 0.467 546 0.467 923 0.467 921 0.467 919 0.467 333 0.467 657 0.467 829
10 0.188 895 0.188 902 0.188 902 0.188 902 0.188 736 0.188 818 0.188 864
10? 0.064 958 0.064 958 0.064 958 0.064 958 0.064 935 0.064 946 0.064 952
10° 0.021 1070 0.021 1072 0.021 1072 0.021 1072 0.021 105 0.021 106 0.021 106

#b< . form of the functional with M = 1,2,3, respectively.
defyy_form of the functional with M = 2,3,4, respectively.

intermediate regime, giving a very poor approach to E (4 ).
This failure is obviously due to the fact that the approximate
function (5.6) does not obey the A ~'/2-power expansion
which is required by the exact one.

Our FM, on the contrary, can satisfy both expansions.
Using the results of Sec. 11 we obtain

F=q *+ A9 °Blg) A>0, (5.8a)
where
g 2 4Abg =1, u=Aq7* v=g% (5.8b)

It is possible to compute E (4 ) approximately by two ways;
i.e., using the u or the v form of F. In the first case we have
(4=0)

bo=E, + 2b, (5.9a)
b,=E, + 3bE, + b?, (5.9b)
b, =E, + SbE, + 6b2E, + b>, (5.9¢)
b, = E, + TbE, + 15b2E, + 10b°E, + b*.  (5.9d)

As was said in Sec. I1, the first M coefficients b, in B (g) deter-
mined with (2.12) allow the functional to reproduce the A-
power series up to the (M + 1)th order and b,, . , given by
(2.20) takes into consideration the behavior of E {4 ) in the
very large A regime.

In order to show how the results are improved by add-
ing terms to B,,, we have computed Fwith M = 1,2,3. In the
first two cases there exist stationary points b * = 9.266 and
b * = 7.930, respectively, which are A-independent. In the
third case there are no stationary points but an inflexion
point that changes approximately from 9.0 to 10.7 as 4 in-
creases from 0 to o . The best b * value was determined ac-
cording to (3.18). Table III shows that our results are in an
excellent agreement with the exact ones (obtained by Rom-
berg integration) in the whole range of A values. Further-
more, our functional is much more accurate than Booth’s
formula (5.6)* for all A values.

The coefficients in B }, [(2.19)] can be easily calculated
through (2.16), the first five ones being

by=b%?e, (5.10a)
b;=b%e, +3b%%e,—b, (5.10b)
by =b%%e, 4+ 2b%, + b e, —b, (5.10c)
by =be;+3by —2b] +1by—1ib, (5.10d)

by=b"e,+3bi —%bs+3b3 — b5 +4b (5.10¢)

In this case, it is not necessary to add an extra term to fit E (1 )
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in the small A regime for 4 = O takes E, into account. We
have calculated F with M = 2,3,4 and the results are shown
in Table II1. The best b * values are stationary points placed
in 15.582, 6.057, and 6.360, respectively. Also in this case,
our results are much more accurate than Booth’s.*°

The FM might be useful in another very important
physical area. The denominator in (5.1) which represents the
classical partition function of the anharmonic oscillator is
also closely related to the integral

Z(/l)=1r‘”2f exp( — x* — Ax*) dx, (5.11)

representing a zero-dimensional ¢ *-field theory.'>**~ It is

very easy to show that Z (1 ) obeys

Z(A)= i ZAt=a7 i zA ~ 7, (5.12a)
where

Z, = (— 14/ {2%n20)3, (5.12b)

z; = (— 1T ({2i + 1}/8)/ 27" 1), (5.12¢)

Since this problem does not differ too much from the anhar-
monic, mean-square, displacement function considered pre-
viously, we do not discuss it here in detail. The application of
the FM is straightforward, and it might probably yield re-
sults as good as those shown in Table III.

B. The quartic anharmonic oscillator

Since the appearance of the fundamental papers by
Bender and Wu,?* Simon,? and Hioe et al.,*” much is known
about the analytical structure of the eigenvalues of the 2k-
anharmonic oscillators (3.28). For example, even though the
RS perturbation series has zero convergence radius, it was
proved that the Padé approximants converge to the exact
eigenvalue.2 Furthermore, some renormalized perturbation
series*®° also seem to be convergent (or at least slowly diver-
gent).

We will consider here the quartic anharmonic oscillator
only,

H=p* +x* + Ax*, p=—i—d—, (5.13)
dx
for which the FM gives us
F=A/9"+¢" +14"B(q), (5.14a)
v=g*u=A2q¢° q*+Abg®=1. (5.14b)
The Cardan solution for this last equation,
g% = (1/34b){2 cos[(w — ¢)/3] — 1}, (5.15a)
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TABLE IV. Lowest eigenvalue of the quartic anharmonic oscillator calculated by means of several approximation procedures.

A E® Eb E* Ed E* Ef Es® EexncMB
1073 1.000 748 69 1.000 748 69 1.000 7489 1.000 748 69 1.000 748 70 1.000 748 69 1.000 748 69
10~2 1.007 373 62 1.007 373 61 1.007 3907 1.007 373 32 1.007 3740 1.007 373 65 1.007 373 67
10~! 1.065 2860 1.065 2725 1.066 2036 1.065 1651 1.065 268 1.065 2807 1.065 2855

1 1.392 951 1.392 2297 1.403 3233 1.529 2635 1.388 9615 1.392 108 1.392 3160 1.392 3516
10 2.452 664 2.449 0098 2.488 624 2.851 407 2.433 9912 2.448912 2.449 1392 2.449 1741
10? 5.008 898 4.999 2298 5.095 161 4.960 7686 4.999 270 4.999 3984 4.999 4176
10° 10.660 996 10.639 4824 10.851 511 10.553 4402 10.639 717 10.639 7794 10.639 7887
10* 22.9077 22.860 9968 23.320 287 22.674 157 22.861 574 22.861 6044 22.861 6089

*Second-order u-functional [b * according to (3.18)].
®Second-order Caswell’s results'! (6 * = 4).

¢ First-order u-functional (scaling variational method
9Second-order Killingbeck’s partition scheme.’

). 19,20

<Second-order Pascual’s* and Dmitrieva and Plindov’s®® renormalized series.

! First-order functional with e,
& Second-order functional with ¢,.

¢ =arccos(l — ¥ A%, Ab<33™'3 (5.15b)
F = —(1/346){1 + 2/sin2y)}, (5.15¢)
¥ = arctan{tan'/3(y/2)}, (5.154d)
¢ = arcsin(1/cos ¢), Ab> 3373 (5.15¢)

allows us to compute d(g*)/Jb exactly, and so we can calcu-
late the stationary points very accurately.

When only the first three coefficients b, of the » expan-
sion (2.18) are included in the functional, and, taking into
account that £, = 1 (4 = 0} for the lowest eigenvalue (the
only we consider here), we obtain

F=¢q* + Abyg* + A1 7b,q"° + 1 °b-q"¢, (5.16)
where

by=3/4+b/2, (5.17a)

b= —b*/8+3b/4—21/16. (5.17b)

When b; = 0 (i>2), the functional F has no stationary
points but an inflexion point changing from b *~4.00 to
b *~4.52 as A runs from 0 to «. Taking b * = 4, we obtain
second-order Caswell’s results'! exactly. The inflexion point
lies within a plateau that becomes larger as A decreases. We
have computed the lowest eigenvalue of the quartic anhar-
monic oscillator for different A values using the plateau crite-
rion of Sec. III to determine b *. Results are compared in
Table IV with the exact (numerical) ones*® and with those
obtained by means of other approximation methods: (i) sec-
ond-order Caswell’s results (b * = 4)'!; (ii) first-order FM
calculation (scaling-variational method***"); (iii) second-or-
der Killingbeck’s partition scheme?®; (iv) second-order Pas-
cual’s* and Dmitrieva and Plindov’s>® renormalized series.
The best results are obtained through Caswell’s generalized
Wick-ordering method that is a particular case of the FM.
The great success of this calculation is due to a fortunate
choice for b *.

To show the advantage of the FM we will now discuss
how to improve previous results by taking into account the
large A behavior of the ground-state eigenvalue E (1 ). When
A — w0, the quantum-mechanical problem (5.13) tends to a
quartic oscillator that is a very useful model to study the
vibrations of some molecular rings.*® Furthermore, it can
alsobe related to a zero mass ¢ * field theory. The main coeffi-
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cient in the large A expansion is ¢, = 1.060 362 077, which
can be introduced in F through b,, , [see (2.18) and (2.20)].
When M =0,

b, =ey b33 —b%/2 —3b/4, (5.18)
and F shows an inflexion point & *(4 = 0)~3.90,
b*(A — «)=~4.35. On the contrary, when M = 1,
b,=e,b%° —3b3/8 —3b2/2 + 21b /16, (5.19)

and F hasastationary point b * = 4.963 for all A values. Since
Fwas forced to behave properly when A is small or large, the
highest errors should appear in the intermediate A regime
(boundary layer*’). Table IV shows that these errors are not
higher than 3 X 10~ in the second case (M = 1). Clearly, the
FM yields excellent results in the whole range of A values
which are far better than those obtained through other ap-
proximation procedures.

In closing this subsection, we want to discuss another
very striking success of the FM. When ¢, is taken into ac-
count, F can be expanded as

Foeg A3 pet 4713 4o (5.20a)
where
e =b""2_2b7*3by+bb '+ bbb
— bbb 7+ 2b,b 78), (5.20b)

When using the proper b *, b, b,, and b, values, we obtain ¢;
= 0.361 929 which is an excellent estimation for the exact
coefficient e; = 0.362 022’ Clearly, this fact explains why
our approximate eigenvalues are so good even for moderate-

ly large A values. In all cases studied, we have found that
whenever the functional was forced to behave like e, A% in
the large 4 regime, then it provided a very good estimation
for e,. This fact suggests that the functional (2.2) has the
proper form in order to approximate (2.1).

Recently, we have shown®*?! that the eigenvalues of the
anharmonic oscillators can be accurately computed by way
of an improved variational functional method. But this pro-
cedure is not so general nor so accurate as the present one.

Almost all techniques for summation of series devel-
oped during the last years have been applied to the anhar-
monic oscillator model, for it is the simplest quantum-me-
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chanical nontrivial problem that leads to an RS series with
zero convergence radius. On the contrary, only a few of these
procedures (or none at all) have been applied to more com-
plex problems. Since the FM does not take into account the
Hamiltonian of the problem explicitly, then it is suitable to
handle even nonseparable Schrodinger equations provided
the power series expansions are known. This fact will be
made clear in the next subsection.

C. The Zeeman effect in hydrogen

The hydrogen atom in a uniform magnetic field of arbi-
trary intensity>® poses a quantum-mechanical problem of
great interest in physics and astrophysics. The Hamiltonian
describing the interaction between the electron of a hydro-
genlike atom with nuclear charge Z and the magnetic field
% supposed to be aligned to the z axis is (atomic units are
used throughout)

1[# , 19 &
HZ A= - ]2 19 _]
%) 213>  p + iz
m> | Ap? z
T s T e B

where p? = x? + y°, m is the magnetic quantum number,
and A = %+% . The paramagnetic and spin terms were tak-
en off because they are only trivial additive constants.*°

For small enough A values, the eigenvalues of H can be
accurately computed through the RS series. Although it is
not rigorously proved yet, most researchers believe that the
A-power expansion for this problem has zero convergence
radius.

For very high magnetic field intensities (1 — ), the
system behaves like a two-dimensional harmonic oscillator
with the electron unbounded along the z direction. The scal-
inglaw H(Z,A) = A "2H(ZA ~V/* 1) suggests that at
least part of the eigenvalue E (4 ) could be expanded in powers
of A ~V/4:

EA)—AEA)=41? i e, A~

=0
The other part AE (A ) exhibits a logarithmic contribution
that cannot be taken into consideration by our formulation®!

AEA)= —iIn’A +(Ind)In(ln 1)
—2{In(ln A )}2 + . (5.23)
Notwithstanding, we can obtain s and ¢ by considering
a = — 1/4 and B = 1/2 (see Sec. II). Therefore, the func-
tional should be (Z = 1)
F=A/q*+ 1/q + A¢’B(9),
g+ Abg*=1.

(5.22)

(5.24a)
(5.24b)

Sinceour A ~!/4-power expansion is not complete, we write B
in terms of u( = Ag®) only [see Eq. (2.18)]. This example re-
veals the semiclassical origin of the FM for Eqgs. (5.24a) and
(5.24b) are reminiscent of the classical energy and trajectory,
respectively.>?

In this article we only make a brief exposition of the
application of the FM to the Zeeman effect for the hydrogen
atom, and a detailed discussion and calculation will be pre-
sented in a forthcoming paper.

For the hydrogen atom (Z = 1), the coefficients of the
functional are
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A= —1-1/2n%, n=123,., (5.25a)
by=E, —2bE, + b, (5.25b)
b, =E, + b%E, + 2E,, (5.25¢)
b, = E, + 6bE, + 3bE,, (5.25d)
by = E, + 10bE, + 21b2E, + 4b°E,. {5.25¢)

We consider here the ground state only for which several
coefficients £, have been exactly computed,?*

E,=1/4, E,= —53/192,

(5.26)
E,=5581/4608, E,= —21577397/2211 840.

Furthermore, the large-field behavior of the eigenvalues can
be easily taken into account for e, is also well known,

(5.27)

where NVis the Landau quantum number that labels the ener-
gy levels of the aforesaid two-dimensional harmonic oscilla-
tor. As the field increases, the ground state of the hydrogen
atom (n = 1) tends to the lowest energy level of the oscillator
( N = 0).54,55

Alsoin this example, the stationary points can be accur-
ately determined by resorting to the analytical solution of
the quartic equation (5.24b).%® We have made two different
calculations of the ground-state energy of the hydrogen
atom in a magnetic field: the first one by using (5.25b) for b,
and Eq. (2.20) for b,. This case shows a stationary point
b* = 1. In the second calculation we have computed b, and
b, through Egs. (5.25b), and (5.25¢) and &, by way of (2.20}.
Table V shows that both sets of results are in an excellent
agreement with the exact (numerical) eigenvalues®’ in the
whole range of field intensities. As far as we know, there is
not an analytical expression in the current literature for the
eigenvalues of this problem as simple and accurate as those
we have presented here.

Though being an important physical problem, the Zee-
man effect for a hydrogen atom is considered here as an
example. More accurate calculation (taking more perturba-
tion terms into consideration) will be presented in a forth-
coming paper.’®

e =4N+1),

VI. FURTHER COMMENTS AND CONCLUSIONS

We hope that the arguments given in this article are
reasonable enough to convince one that the FM is a very
useful tool for improving convergence of a wide variety of

TABLE V. Ground-state eignevalue of the hydrogen atom in a uniform
magnetic field of intensity # = 4 /2 (a.u.).

B E® E b E exact57
0.03 — 0499775202 — 0499775223 —0.49977522
0.10 —0.49752428 —049752670 —0.497 52648
0.40 — 0.464 519 —0.464 816 — 0.464 6054
1.00 —0.332 625 —0.335132 —0.3312
3.00 0.311 02 0.298 53 0.3355

10.00 3.1010 3.0611 3.2522
100.0 44.686 44.496 45.27

* First-order u-form of the functional with e,.
®Second-order u-form of the functional with e,
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power series expansions. Besides the eigenvalues of the two-
level model discussed in Sec. IV, our method increases the
convergence radii of the Taylor expansions of functions like
1/(1 +4), (1 + 1)"2, and several others we have studied.

The examples discussed in the previous sections show,
beyond any doubt, that the FM is very useful in calculating
physical properties that can be expanded in power series,
even though few terms are taken into consideration.

Some problems like the confining potential models

H=p"—1/r+ A7, k=12, (6.1)
are specially suitable for being handled in this way because
the eigenvalues and eigenfunctions are well known in both
limits (A = 0 and A — ). Therefore, in these cases we can
compute analytical coefficients for both power expansions
which are of the form (2.1) withf = 2/(k + 2)anda = — 1/
(k + 2).

In Sec. III our method was shown to be more general
than several other ones proposed before. To make this state-
ment even more convincing, let us consider the Stark effect
of a planar polar rigid rotator. The Hamiltonian (in appro-
priate units) is

H= — L d +Acosf, 0<O<2w

2 do? ’ ’
its eigenfunctions obeying ¥, (6 + 27) = ¥,(@). In the very
high field strength limit (4 — o), the system becomes a one-
dimensional oscillator, and the eigenvalues can be expanded
in the form (2.1) with S = 1/2 and @ = — 1/2. Many other
very interesting physical models like a linear (or symmetric-
top) polar molecule (in the rigid-rotator approximation) in a
uniform electric field*® behave in this way and can be easily
handled by means of the FM. In all these cases, the potential-
energy operator is not an homogeneous function of the angu-
lar coordinate, and so it does not obey any scaling law. This
fact and the periodic boundary conditions make it difficult to
apply the convergence techniques described in Sec. II1. On
the contrary, all this does not matter when using the FM for
this purpose, because it only takes into consideration the
power series expansions.

Note added in proof: Here we briefly prove that the sta-
tionary points of F are A independent.

By differentiating Eqgs. (2.10) and (2.11), where 4 is held
constant and B = B,,, with respect to b we obtain

(6.2)

(Qf) = —(1=bu)f®a b ' {la+ 1) bu —a} !
ab/
X{Po + Pybu + e + Py o (bu) 2],
where
b2 dJ, B .
P B (B ),
a b a + 1
b2 al;_,
- —(@+1)——,
( ) 3
J, =d,/b’
[see Eq. (3.39)], and
J;=0 if i<O or i>M+1.

By virtue of Eq. (2.12) and the properties of the binomial
coefficients ({), it follows that P, = 0if i <M + 2. We then
conclude that the stationary points of F are the roots of
P,, . , and, therefore, A independent.

2389 J. Math. Phys., Vol. 25, No. 8, August 1984

A similar reasoning shows that the inflexion points of F
remain finite for all A values.
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Poisson structure of the equations of ideal multispecies fluid

electrodynamics
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The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian
form, following general methods of symplectic geometry. The dynamical variables are the fields of
physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the
standard one. However, it is a skew-symmetric bilinear form which, from the method of
derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has
all the essential properties of a canonical Poisson bracket.

PACS numbers: 02.40.Vh, 47.65. + a, 03.40.Gc, 52.30. +r

1. INTRODUCTION

In this paper, we present a derivation of the Poisson
structure for ideal multifluid electrodynamics, using meth-
ods of symplectic geometry. As a corollary, we shall also
obtain the structure for the Coulomb case. These models are
thus placed in the larger context of modern classical me-
chanics as Hamiltonian field theories. For further back-
ground and another application of the geometric techniques
used in this paper see Ref. 1, in which the Poisson structure
for the Maxwell-Vlasov system is derived. Our results have
already been presented elsewhere,? but without derivation.

Since the completion of this work, other methods have
been discussed for deriving Eq. (26). Kaufman® has done so
from a particle Lagrangian, while Kupershmidt and Holm*
have used Clebsch variables. In addition, Marsden and
Weinstein have proved that Eq. (26) can be derived from the
equivalent result for the Maxwell-Vlasov plasma, Eq. (7.1)
of Ref. 1, by, essentially, averaging over the particle distribu-
tion function (see Ref. 5). They have also pointed out similar-
ities with work of Menikoff and Sharp® on current algebras,
in which, starting with quantum commutation relations, an
equivalent semidirect product group is constructed.

We consider a system composed of one or more fluids.
Each species, with species label denoted by s, is character-
ized by the mass m_ and charge g, of the particles of which it
is composed; let a, = g,/m,. The most common situation
encountered in plasma physics is to have only two species
present: electrons and singly charged positive ions. In terms
of the electric field E, magnetic field B, fluid velocities u,,
mass densities p, and specific entropies o,, the equations of
ideal multifluid dynamics, in rationalized units, are

%—=VXB—ZGSPJM (1a)
%8 _vxE, (1)
at

VE=34,p, + po (2a)
V-B=0S, (2b)

® Current address: Harvard Medical School, 25 Shattuck Street, Boston,
MA 02115.
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Jdu

S~V t B+ uxB)— p V.,
dp,

— _V{pu), 3b
> (p,u,) (3b)
(90'5 v 3)

= —u.-Vo,,
= Vo, (3¢

where the specific internal energy U ( p,,0,), expressed as an
equation of state, yields the (partial) pressure p, according to
, 90,

L = p? ) 4
p paps (4)

Equations (1) and (2) are the Maxwell equations, including
an external static charge density p,,, (x), and Eqgs. (3) and (4)
are the laws of compressible ideal fluid dynamics. We ne-
glect dissipation and therefore express entropy convection
by the adiabatic condition Eq. (3c).

The set of state variables for this system of k& fluids con-
sists of the electric and magnetic fields, along with the 3k
dynamical variables {u, p,,0,}, s = 1,....k. The evolution
equations for these quantities are Egs. (1) and (3), while Eqgs.
(2) may be regarded as constraints.

The energy of the combined system of fluids and fields
is equal to the sum of the kinetic and internal energies of the
fluids, and the energy of the Maxwell fields. The Hamilton-
ian can be written

H(u,, p,,0,,BE)=3 H(u,p,0)+H,BE). (5

[We shall sometimes, as on the left-hand side of Eq. (5), write,
e.g., p,, using the general species index s to stand for the set
of all k species. Whether this is the case or whether p, refers
to the single species s will always be clear from the context.]

Before proceeding, we replace the velocity variables u,
by their corresponding momentum densities M,= p u,.
Then (5) is, explicitly,

H(Ms’ps’as’B’E)
=2 f (é—ps‘ M| +p, Us(ps,os)) d’x
+f(i |B12+i|E|2)d3x (6)
2 2
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and Egs. (1) and (3) can likewise easily be written in terms of
M,. We denote the phase space for each fluid by
7. ={M,, p,,0,)}, the Maxwell phase space by
Z ,,={(B,E}}, and the phase space for the combined system
by Z={(M,, p,,o,,B,E)}.

In the following, .7 (S') will be used to denote real-val-
ued functions defined on the space S.

We wish to derive an expression for a Poisson bracket
{ , WF(P)XF(Z)>F(Z) with the following two prop-
erties.

i) (F(Z), { , })isaLiealgebra.

(ii) The evolution of a phase functional % : 7 —R can be
written in the form of a Hamiltonian evolution equation

F={(FH], ™

where the Hamiltonian H is given by the energy, Eq. (6). F
can be, for example, a component of one of the field varia-
bles, yielding Egs. (1) and (3).

In Sec. I we briefly review some of the necessary math-
ematics and establish our notation. In Sec. III we discuss a
derivation of the Hamiltonian structure for the dynamics of
ordinary ideal fluids. This discussion is based on an explicit
realization by Marsden and Weinstein of ideas contained
implicitly in work of Arnold.” In Sec. IV we review briefly
Marsden and Weinstein’s treatment of the vacuum Maxwell
equations. This is an essential ingredient both in their formu-
lation of the Maxwell-Vlasov model of plasma dynamics,
and in the formulation of the multispecies fluid model to be
discussed in the present paper. In Sec. V, the formalisms of
the two preceding sections are combined, following the gen-
eral plan of reduction of symplectic manifolds with symme-
try® and the coupling of Hamiltonian systems to gauge
fields.” This produces the desired form, Eq. (7), for Egs. (1)
and (3), and in addition, yields Eqgs. (2) as a direct conse-
quence of gauge invariance.

Il. IDEAL FLUID DYNAMICS

The equations of motion of an ideal compressible fluid
are Eqgs. (3) and (4), with kK = 1 and @, = 0. The Hamiltonian
is the first integral in (6). Deleting the subscript s for a single
fluid, the dynamical variables are (M, p,0), and the phase
space consists of the set of all such triples. Therefore, we may
define this system by

du au

—= —(uVju-— —lv ’ =p? ’

e (u-Vju—p~'Vp, p=p o) (8a)
dp

o (pu), (8b)

HM.po)= [ (257 IMF +5U(p0))d. )

We shall now review the construction used to obtain the
Hamiltonian structure of ideal fluid dynamics. Let Gbe a Lie
group, g its Lie algebra, and g* the dual space to g. The
duality pairing is denoted by ( , ). For a function Fe.% (g*),
the functional derivative 8F /5u with respect to the variable
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4 in g* is defined by
DF(/.L]-‘VE<‘V, g) for all veg. (10)
Su

Here, g** has been identified with g so that 5F /dueg. We will
be concerned with the case in which g is comprised of vector
and scalar fields on R*, Then g* may be considered to consist
of vector fields and scalar fields, with the L * pairing, or of
vector field and scalar field densities. In this case, for
feg, geg*, we may write { £,g) = f gf d *x and Eq. (10) may
be rewritten

6F ~ .5 d -

6ffd X—d€E=OF(f+€f), (11)
where Fe.5 (g*). This is the most convenient form for explicit
calculations.

Now consider the orbits 7%, peg*, of the co-adjoint
representation of G in g* In other words,
% = {(Ad, _,)*(n)|geG }, where Ad}:g*—g* is the dual
map to Ad,:g—g The latter is defined by
Ad, = T,(r,_,°l,), the tangent map at the identity eeG of
the indicated composition of right and left translation. The
Kirillov-Kostant-Souriau theorem states that the Z% are
symplectic manifolds, with a nondegenerate Poisson bracket
of functions F, Ge# (0 *) defined by

)

(FG)a) = —(a|[22] 22

8Bla OB

where S is the variable in &%, ac/¥, and [ , ] is the Lie

algebra bracket on g. This structure can then be extended to

a degenerate Poisson bracket { , } on all of g*, which is a
disjoint union of the ¥, given by the same formula.

For the case in which g is comprised of vector and scalar

fields on R, Eq. (12) may be rewritten

{F,G }la)= —fa oF ,iq ]d3x. (13)
8Bla OB la

We shall refer to Eq. (12} or {13) as the Lie~Poisson bracket.

A proof of the theorem, as well as a clear exposition of the

background mathematics, may be found in Chapter 4 of Ref.

10.

We claim that a suitable Poisson bracket for the system
(8), (9) can be derived as the Lie-Poisson symplectic struc-
ture on the co-adjoint orbits of a certain Lie group G. The
spaces of vector and scalar fields on R will be denoted by £
and %, and the spaces of field densities will be denoted by
Z* and F*.

In order to guess what G might be, we are motivated by
the physical set-up in the following way. The phase space
{(M, p,0)} must be the dual g* to the Lie algebra g of the
group G. The set of momentum densities may be regarded as
the set of vector field densities on R and mass and entropy
densities are scalar field densities. Thus the fluid phase space
is the direct product

Po=qt = P*XF*XF*.

An isomorphism between g and g* is established by the
L ? pairing; it is therefore immediate that g = & X.F X F.
&, which may be thought of as containing velocity fields on
R?, is the set of generators of displacements of the fluid.
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Hence, the part of G which corresponds to the factor £ in g
is the group of diffeomorphisms on R?, denoted 2 (see Ref.
11 for a discussion of & as a Lie group). On the other hand,
F is a vector space, so that the parts of G corresponding to
these factors in g are ¥ itself.

Throughout this paper, we assume that all fields are
C =. One can then show’' that & and G are smooth mani-
folds. G may then be regarded as sets of triples of parameters
labeling positions, densities, and entropies of fluid elements,
and one obvious possibility is that G = & X.% X.#. This
direct product structure implies complete independence of
the groups involved. Physically, however, we note that the
dynamical variables are related in the following way. Let 5
denote a diffeomorphism representing the change in position
of fluid elements from the set of their initial positions {x,}, to
their positions {x} at some later time. Then for the values of
the density and entropy of the fluid element at x, we have,
respectively, p(x) = pon(x,) and o{x) = oo9(x,). In other
words, we keep track of these quantities by composition with
7. We postulate then that the group & acts on & X.# ac-
cording to

7(f8) = (fon.g°n), where (fgleF XF, (14)
and therefore conjecture that

G=IX(FXTF). (15)

The semidirect product structure, indicated by 1X, is speci-
fied by the action (14), linking the field variables.

The rest of the calculation is the explicit construction of
the Lie-Poisson structure for g*. First, we recall two facts
from Lie group theory. Let H = H X H, be a group defined
as the semidirect product of the groups H, and H,, with the
action @:H, X H,—H, of H, on H, specified. Then the in-
duced infinitesimal (Lie-algebraic) action ¢ of the Lie alge-
bra f), of H, on the Lie algebra ), of H, is defined as the

1

EGIMpo) = - [Mopo)- (2, £, 2F)

tangent map of @ at the identity
¢ =T.P:H,Xh,—b,. (16)
Furthermore, the Lie bracket on §), X §, is given by

[(§I9§2)!(§l’§2)]

= (gl’§1]9g2’§2] +¢ (§1’§2) — ¢80, (17)
where (£,€,) and (§,,4,) are in §; X B,. The following lemma
follows from (16).

Lemma: The infinitesimal action ¢ of #on ¥ X.% in-
duced by the action (14) is

$(X,(f8)) = (X-df, X-dg).
Using this and the fact that % X.¥ is an abelian Lie algebra,

we find from (17):
Lemma: The bracket in the Lie algebra g of G is

(X 18 WY S8

= (X-dY — Y-dX.X-df, — Y.df X-dg, — Y-dg,). (18)

With this, we can now write down the Lie—Poisson
structure on g*.

Proposition: For two phase functionals F, G:g*—R, the
Lie-Poisson bracket on g* is

{F,G |M, p,0)

=wa-(5F.v 56 _ 8G 6F)d3x
M M M M

(926 50 g 0P,
oM Sp oM Sp

~fa(——‘5F 26 _ %G -V£>d3x. (19)
oM oo M do

Proof: Using the result of the second of the above lem-
mas in Eq. (13}, we compute

8G  6G éﬁ)]d&

M 8 S0/ \6M’ 8p  ba
:f(M,p,g’)v(aF .V 6G — 5G .V SOF , 2 .v‘s_G__‘i_G_.v‘s_F,
M M &M M 'SM & M &
OF 56 86 Oy
oM bo oM So

from which the result follows. This bracket is identical to the
one obtained by Morris and Greene for ideal fluids [Ref. 12,
Eq. (9)], using different methods.

The final step is the verification of the following:

Proposition: Equations (8) follow from Egs. (9) and (19)
in the form (7).

Proof: In this case, the functional derivatives of H are
just the partial derivatives of the integrand in Eq. (9). In other
words, writing

Z =4p~'IM|* +pU(p,0)
for the Hamiltonian density, so that H = { 7 d *x, we have

6H _dX% S6H_o% O6H _dXxX
do

M oM’ & dp b0
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l

Then Eq. {7) yields equations of motion equivalent to
Egs. {8), which are obtained from them by making the
change of variables M=pu.

Note that the validity of this proposition does not fol-
low automatically from what preceded it. Although one tries
to motivate a guess of the correct group from physical con-
siderations, the Lie—Poisson structure can of course always
be constructed, even if the wrong group is used. Therefore,
the equations of motion must always be checked.

lll. THE VACUUM MAXWELL EQUATIONS
The vacuum Maxwell equations have been treated as a
Hamiltonian system by Pauli'® and by Born and Infeld,"* but
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the discussion by Marsden and Weinstein' from the view-
point of the reduction procedure has additional noteworthy
aspects. It is appropriate now to recall some relevant defini-
tions and theorems. (See Chap. 4 of Ref. 10 for proofs and
further details.)

Foranaction @:G X ¥ —Z ofa Lie group Gonamani-
fold 2, the infinitesimal generator corresponding to £eg,
£ ., , 1s the vector field defined by

§7(P)=— D (explt§ ),p) -

t=0

We assume that there is an associated momentum map
J:g—F (#) with the property X5 =¢ ,» , where X5, is the
Hamiltonian vector field on & with energy function J (£ ).
Then the momentum map J: # —g* for the action @ is de-
fined in terms of J according to ( J(p),& )=J (£ ){ p). Now
suppose H:Z —R is G-invariant, that is, H (®(g,p)) = H( p)
for all pe# ,geG. Then 7 (£ ) is a constant of motion for the
dynamics generated by H. In other words, to every one-pa-
rameter subgroup of G, that is, to every &g, there is associat-
edaconstant of the motionJ (£ )under the dynamics of any G-
invariant Hamiltonian.

It follows from this that the momentum map J is a con-
stant of motion for any G-invariant Hamiltonian H; in other
words, the dynamics take place on level sets of J. Now let G
be abelian and define an equivalence relation on Z by
Pi1~p, if and only if there is a geG such that @,(p,) = p,.
The quotient 7 /G is a well-defined Poisson manifold, pro-
vided @ is proper and free, with the Poisson bracket of func-
tions F,F,e % (# /G ) obtained by lifting F,,F, from Z /G to
7. The quotient spaces J ~'(u)/G =2, peg*, form sym-
plectic leaves of #/G, in the same way that the 7% are
symplectic leaves of g* (for u a regular value of J).

The phase space for electromagnetism is the cotangent
bundle T *¥ to the space 9 of vector potential fields A on R>,
This bundle may be identified with pairs (A,Y), where Yis a
vector field density on R®. With the L ? pairing, one has the
canonical (cotangent bundle) Poisson bracket on functions
F, G:T*U—-R

iF,G}(A,Y)=f(5—F 86 _2F.56) o

SA &Y 6Y SA
Defining the electric and magnetic fields by
E=-Y,
B=VXxA,

and transforming by this change of variables, one obtains

{F.G }(B,E)
) - b )e

This, together with the Maxwell field energy
— |E|2) d>x
2

HyB.E) = [ (1B + 2

yields the vacuum evolution equations
JE aB
=VXB, —= —VXE
ar ar
in the form of Eq. {7). The auxiliary equations
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VB=0,
VE=0,

follow from the invariance of electromagnetism under the
gauge transformation

A>A 4+ VA, Ae¥, (21)
in a way which will be made explicit in the more general
calculation of the next section. The crucial point is that (21),
which defines an action of %, considered as a Lie group
under addition, on ¥, preserves Poission brackets, and leaves
H,, invariant.

When .7 is thought of as consisting of scalar functions
A defining gauge transformations, we denote it by ¥, to
indicate the gauge group. We state for later use that the mo-
mentum map for the action (21) of & on T * % can be shown
to be

JulAY)= —V.Y.

IV. MULTIFLUID ELECTRODYNAMICS

We now couple the systems discussed in the two preced-
ing sections, and use the reduction procedure to derive the
Poisson structure for the combined system.

The canonical momentum density N for species s in the
presence of the Maxwell fields is

N =M, +a,pA,

where A is the vector potential. This is the classical relation
between particle momentum and velocity, p = m(v + aA),
suitably modified for fluids. It may also easily be derived
from the Lagrangian for the fluid system.

The prereduction state space is therefore taken to be

= { (Ns7 ps’U},A;Y) } ng X T*%I 5
where
QPF=D*XF*XF*,
and the Hamiltonian H:Z —R is just the energy written in
these variables:

H(N,,p,,0,,AY)

-32/(5

+f%([V><A|2+ Y]2)d . 22)

The Poisson structure on Z is just the sum of that on g¥, Eq.
fgr each fluid, and the canonical bracket on T *%. For
Z SR, then

}

N;, p,,0,,A.Y)

=_2JN5_<6F.V 56 _ G 6F)d3x
g 8N, 8N,  ON,

s 5

—Zf ((SF v9G _ 8G 5F)d3

p: 'IN, —a, p,Al* +p, Us) d’x

(19)
F.G:

{F,

05 5N ép,
S5F 6G 5G S5F
- o5 _ 97 d?
ZJ (6N 57, N, V60'S) *
§F 6G 6G OF
of oG oG dx.
+f (6A 5Y A 6Y) * (23)
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The coupling between g¥ and 7 *Y appears only in the Ha-
miltonian. Reduction reverses the situation, so that the Ha-
miltonian appears as a sum of terms, each of which may be
identified with either the fluids or the Maxwell fields, while
the Poisson bracket exhibits a mixing of these two types of
variables.

The reduction of Sec. IIT was carried out with the action
{21) on T *YU. The requirements of the reduction procedure
are that this action be extended to an action @ of the gauge
group & onall of Z in such a way that the Hamiltonian, Eq.
(22), is invariant, and that Poisson brackets of functions on
P are preserved. Hence, we require (i) Hod = H, and (ii)
{Fodp, Godp | = {F,G }o®, where F,GeF (7). It is obvious
from Eq. (22) that the action
P (AN, pys

0,AY)= (N, +a, p,VA, p,,0,,A + VAY)

(24)

satisfies the first requirements, and we must now show that it
satisfies the second.

Lemma: Let G be a Lie group, with Lie algebra g. Let
L *:g*—g* be linear. Then L * preserves the Lie—Poisson
bracket { , ] of Eq. (12) on co-adjoint orbits if L:g—g, the

adjoint of L *, preserves the Lie algebrabracket[ , Jong. In
other words, for £,{eg and E,F:g*—R,
[LE,LE) = L [€,6 ) implies { EOL * FoL *} = {E,F JoL*.

Proof: Using the linearity of L *, and with pu,veg*,

<V’ 8 (FoL *)> _

3 D (FoL *)( u)-v = DF (L *(p))-DL *(p)v
"

= DF(L* (L v = (L, Z—i (L *u)
= (L ;ﬁf L)

so that (8 (FoL *)/8p)( p) = L (SF /8u)(L *u). Hence,

{FoL *,GoL *}(p)

Su

g—i(L*m])
=<L*,[ (L *u), (L*#)]>=fF’G}°L*(#)-

It is clear from consideration of the action (21) that the con-
verse of this lemma does not hold.

Proposition: The action (24) preserves the Poisson struc-
ture Eq. (23) on 2.

Proof: The action (24) is not linear in the last two varia-
bles (A,Y), but we know from Sec. III that it nevertheless
preserves the Poisson structure on 7" *2. It is linear in the
first three variables (N,, p,,0;), so we check the conditions of
the above lemma, with L *=@,, restricted to g¥. We first
calculate @ *, temporarily suppressing the subscript s on the
phase space variable. Let (N, p,o)eg?, (X, f1.82)€g,. Then
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((No,0). P % (X, f1,81))
= (@, (N,p,0)(X, f1.81))
= <(N + aPVA1 P’U)’(X,fpgﬂ)

=fX-Nd3x+JapX(A )d3x+J(pf1+og,)d3x

= <(N7 P’U)’(XaaX(A ) +.f1’g1)> .
Thus, % (X, f,.g:) = (X,aX(A ) + f,,g,)- Using Eq. (18), and
with (Y./5,8,)€q;,

[2%(XS1.81), P%(Y/280)]
= ([X,Y],X-(aY{A4 )} + )
— Y{aX(A )+ £1).X:g, — Yg)
=([X,Y], a[X,Y](A) + X(f2) — Y(£)).X(g2) — Y(g,))
=@% (X, /1.8(Y, /8] -
~In order now to calculate the momentum map
J.P>9* for @, it suffices to calculate J,:g*—Z*, the

momentum map on g¥. Applying the definition of the mo-
mentum map, we require a map J,: ¥ —.7 (g*) such that

X;A)=A4
where the right-hand side denotes the infinitesimal gener-
ator of the action on g* corresponding to A€¥ . In the fol-

lowing, species subscripts will be suppressed. We use the
above to find 4 ,, by equating

<X?(A)(N’ P,U), (X’f;g» = (Ag:(N, P,U), (X)f;g)) ’ (25)

where Xe&”, and f,ge% .

For the left-hand side, we use the form of the Hamilton-
ian vector field X.(8) = ad¥(B), where £ =O0F /éu, and
ad?:g*—qg* denotes the dual to the map ad, :g_—~g defined by
agg (&)= 1&¢ 1. Then, temporarily writing J (A )=F and
8J.(A)/8(N, p,o)=¢ for notational simplicity, and using the
L ? isomorphism g* =g,

(XF(N: P»U),(Y,f,g)) = <adZ(N» P’a)’(Y’f;g))

— (N, pofad, (Y, £g))
= (iNpo| (35 55 2 ),( 78)))

] ()

(5 )+

<(N P ’a)’([aN 6N S e
=[¥5 ] Jelsin-y

+ oG-y (&)

On the other hand, the infinitesimal generator is

2| @ (exptA N, p,o)) = (apV¥A,0,0),
dtl;—o

so that the right-hand side of Eq. (25} is

((apVA,0,0),(X, f:g)) = J apX(A)d>x .
Clearly then Eq. (25) is satisfied by taking 6F/8N =0,
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8F /8p = — aA, and 6F /80 = 0 so that
J,(N, p,o){A ) = 7,(4 N, p,0)

=F(N,p,0)= — faAp d’x.

Thus, J,(N;, p,,0,) = — a, p,, and the momentum map on
Z, obtained by summing

J(Ns’ P: ,U'S :A’Y) = JM(A’Y) + Z J: (Ns’ ps ,O's)
is

J(N;, p,0,AY)= —V-Y— Y a,p,.

Coordinates on the reduced phase

P=J "\ pex)/ F are now given by the following.
Proposition:

P=J Np)/¥
= {{(Ms’ps’gs’B’E)}

space

|V'E=pext + zasPS,V'B=O} .

Proof: Associate to elements (N, p,,0,,A,Y) of Z quin-
tuples (M,, p,,0,,B,E), where M; =N, —a,pAB=V
X A, and E = — Y. Then the proposition follows from the
momentum map constructed above, and a simple verifica-
tion that two elements of J ~!( p,,,) are associated to the
same quintuple if and only if they are related by a gauge
transformation (24). Notice that reduction at the external
charge density p,,, €% * specifies automatically that the dy-
namics takes place on the level set of J, J ~' ( p. ), implying
Eq. (2a). Further, V-B = 0 follows automatically from gauge
invariance and the definition of these coordinates.

It remains now to compute the Poisson bracket on Z.
Theorem: For two functionals F, G of the field variables
(M, p,,0,,B,E), the Poisson bracket is given by

{F,G }(M,, p,.0,,B.E)
= {FG}M,, p,,0,) + {F,G}(BE)

([s(gr e s o
2\5M, BE ~ 5M, OE
SF  5G
B dx, 26
* (5MSX6MS))GSP x 26)

where the first and second terms are defined in Egs. {19) and
{20).

Proof: Given F and G, define Fon Z according to
F(N,, p,,0,AY) = FM,, p,,0,,B,E), where the relation
between the two sets of variables is as in the proof of the
preceding proposition. Define G similarly. Then {F,G }
(M., p,,o,,B,E)is found by rewriting Eq. (23) in terms of the
variables on #, using the following.

Lemma:
. OF 8F S5F
—_—= v ,
W 32~ 2%, o T V%58,
.. 8F 6F
(ll) —_ = y
SN, M,
... OF S5F SF
=-—-Ya A— ,
W 5 T2 A T e,
.. 8F &F
(iv) =
do, bo,
SF 5F
v —==—-—=
5Y SE

J
Proof: We have, for example,
OF Rax=2 F(N,, p,,0,,A + €A,Y)
6A dE e=0
= di F(N, —a, p.(A + €A), p.,0,,VX(A + €A)E)
€le=0

= Dy F(M,, p,,0.,B.E)} —a, p,A) + Dy FM,, p,,0,,BE)}VxA

S5F . 5F
- (—a, pA)d> f—-vaaﬂ
5M. (—a,pA)d°x + 5B x
5F ~ SF ~
- - ca,pAd> fvx—-—-Aaﬂ ,
oM, P 5B *
r

which implies (i).

The other formulas of the lemma follow in a similar
fashion. After making the substitutions prescribed in the
lemma, and using vector identities to eliminate the vector
potential A in favor of the magnetic field B = VX A, one
obtains the result of the theorem.

We observe that the first term of Eq. (26) involves only
the fluid variables and that the second is purely electromag-
netic, while the third provides the coupling of the fluids to
the electric and magnetic fields. Bilinearity, skew symmetry,
and the Jacobi identity all follow for Eq. (26) by the methods
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used in its derivation. In addition, it is readily verified that
the correct evolution equations for the phase space variables,
in the form of Eq. (7), follow from Egs. (26) and (6). Addi-
tional body forces, such as gravity, can easily be incorporat-
ed into Eq. (3a) by the inclusion of an appropriate term in the
Hamiltonian. Finally, Eqgs. (2), rather than being postulated
separately as initial conditions, follow from the gauge invar-
iance of electromagnetism.

The restriction of multispecies electrodynamics to the
Coulomb case, in which B = 0, can also be treated. The sca-
lar potential ¢ is expressed in terms of the mass densities p,
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by

3 a !
s =L ssmﬁ)
4 |x — x’|

and E = V¢. Equations (1) and (2) are then replaced by the
Poisson equation V¢ = — Z_a, p,, and the Lorentz force
term in Eq. (3a) is replaced by a, p,E. The Hamiltonian
structure is obtained by taking the Hamiltonian on the phase
space of sets of triples (M, p,,o;) to be the total energy

H (M, p;,0,)

1 -
=3 [ (oM +p,0p.0)) s

“50 ) (enn)

(Sz a; py (x’)) d’xd>x

and letting the Poisson bracket on phase functionals be given
by the first term of (26). The correct equations of motion for
the dynamical variables (M, p,,0,) now follow in the form
(7).

The application of this formalism to the problem of
mode coupling will be the subject of a later publication.
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The concept of a probability manifold M is introduced. The global properties of M inherited from
its local structure are then considered. It is shown that a deterministic spin model due to Pitowski
falls within this general framework. Finally, we construct a phase-space model for nonrelativistic
quantum mechanics. These two models give the same global description as conventional quantum
mechanics. However, they also give a local description which is not possible in conventional

quantum mechanics.

PACS numbers: 02.50. + s, 03.65.Bz

I. INTRODUCTION

Let.X beanonempty set,and let (Y,%,,v) be a probabil-
ity space. Suppose that for every (x, y)e X XY there exists a
probability space (X(x,y), 2(x,»), u,,) such that (a)
X =U,yX(x, ) for every xe X, and (b)
X (x, )X (x, y,} = &, y,5# V., for every xeX. We then call
the triple

M= XY, {X(x,p){x,y)eX XY}

a probability manifold and we call {X (x, y):(x, y) € X XY}
the local structure of M.

Roughly speaking, X is covered by local probability
spaces which are joined together in a stochastic fashion. In
general, X itself does not form a probability space, but as we
shall later see, becomes a generalized probability space.

A set AC X is locally measurable if AnX (x, y) € X (x, y)
for every (x, y) € X X Y and in this case we call

pAd|x, y) = pn, [AnX (x, y)]

the probability of A along X (x, y). A set of A C X is globally
measurable if A is locally measurable and for every x € X, the
function y— u(4 |x, y)is ' -measurable. In this case, we call

i %) = fu(A 1x, pdy)

the probability of A at x. Finally, aset A C X is totally mea-
surable if A is globally measurable and (4 |x) is independent
of x. In this case, we call u(4 ) = u(4 |x) for every x € X the
total probability of A. We define 2, , A;, A 1, respectively, as
the collections of locally, globally, and totally measurable
subsets of X. If X is the base set of a probability space
(X, X, uo) such that T C A, and | = u,, then we say that
M is coherent. It is easy to show that %, is a g-algebra and
ul-|x,y) is a probability measure on X, for every
(x,¥) € X X Y. Hence, (X, X, , u(-|x, y)) is a probability space
for every (x,y)€ X XY. In general, we have A, C A
C 3, . However, A ; and A; need not be o-algebras.

We call a collection of subsets A of X, a o-class (or A-
field ) if (a) X € A; (b) A € A implies the complement 4’ € A;
and (c) 4; € A mutually disjoint, / = 1,2,..., implies u4, € A.
A probability measure on a o-class is defined in the same way
as a probability measure on a g-algebra. If A is a o-class of
subsets of X, then (X,A ) is called a generalized measurable
space,and if i1 is a probability measure on A we call (X,A, ) a
generalized probability space.'”
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Theorem1:If (X, Y { X (x, y):(x, ) € X X Y })isaprobabil-
ity manifold, then (X, A g, u(+|x)) and (X,A 1, 1) are general-
ized probability spaces for every x € X.

Proof: We first show that (X,A g, u(-|x)) is a generalized
probability space for x € X. Clearly, X € A; and (X |x) = 1.
Suppose 4 € A;. Then

A'nX({x,p)=X(x,y)—AnX(x,y)€Z(x,p),
for every (x,y) € X X YsoAd’'€Z,. Also,

ud’|x, ) =1— uld |x, y),
50y — (A '|x, y) is Tp-measurable for every x € X. Hence,
A'€Ag. Letd; € Ag,i = 1,2,...,be mutually disjoint, and let
A = UA,. Then

AnX(x,y)=u[4,nX(x,y)] € Ag,
for every (x, y)€ X XY so 4 € 3; . Moreover,

pid |x, y) = Z pld;|x, y),
so for every xe€X, y—u(d|x,y) is the limit of
J,-measurable functions. Hence, y — u(4 |x, y) is T y-mea-
surable for every x € X. By the monotone convergence
theorem,

A |x) = Ju(A [x, yIvidy)
=f,¢w[A NX (x, y)11dy)

=3 [ ey 14 0 X 50 M)

= Sl ).

It follows that (X,As, (-|x)) is a generalized probability
space for every x € X. It now easily follows that (X, A , u) is
also a generalized probability space. O0
Let (X,A ) be a generalized measurable space and let f;
X—R. We say that fis measurable if f~'(B) € A for every
Borel set BeB(R). It is easy to show that A,
={f"B):BeB(R)]isasubo-algebraof A. If(X,A, u)isa
generalized probability space and X — R is measurable, we
call fa random variable, as usual. In this case, (X,A,, u|A/)is
an ordinary probability space and we define the integral or
expectation E,(f) = § fdu of fin the usual way. We denote
the set of integrable random variables on (XA, ) by

LY XA, p).
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Theorem 2. (a) If fe L ' (X,Z,, u(-|x, y)), then £ X (x, )
eL'(X(x,y), Z (x, p), s, )
(b} If feL'(X,Ag,pl|x,y), then feL' (X3,
4l|x, y)) for every y € ¥, p—Jx (. ,) f (W) i, ,(dw) is integra-
ble on (Y,2,,v) and

Jy[ X(x’y)f (w)ﬂx,y(dw)]v(dy)= JX S (w) pldw)x).

(c)Iffe L' (X,Ay, u)thenfe L \(X,Ag, pu(-|x))for every
x € X and

L fi) peldw]x) = L Fl) o),

for every x € X.

Proof: Part (a) is straightforward and (c) easily follows
from (b). We therefore only prove part (b). Let fe L ' (X, A¢,
#(+1x)) be a simple function, f= 2/_, ¢;y,, 4; € Ag. Then
A, nX(x,y)eZ(x,y) so flX(x,y) is 2 (x, y)-measurable.
Sincey —u, , [4; nX(x, )] is T y-measurable,

y—> f(w):u‘x,y(dw)=20i lu‘x,y[Ai nX(x’y)]

X(x, y)

is 2, -measurable. Now

L [ JX (X’y)f (w)/‘x,y(dw)]v(dy)

_ f foy [4: N X (x, ) ]MY)

= e, pld,|x) = Lf(w)ﬂ(dwlx)-

Hence, the result holds for simple functions. Now let fe L !
(X,Ag, u(-|x)) be non-negative. Then there exists an increas-
ing sequence of simple functions f; € L '(X,A, u(-|x)) such
that f; — f almost everywhere. Since f|X (x, y) = lim f;|
X (x, y), we have that f|.X (x, y)is 2 (x, y)-measurable. By the
monotone convergence theorem

filw) s, , ldw).

X (x, y)

Slw) p,, , (dw) = lim
)

X(x, ¥
Since y —fx ) filw) i, , (dw) is Ty-measurable, so is its
limit y— [, ,, f(w) 1, , (dw). Again, by the monotone con-
vergence theorem,

| At taulon) = tim | f) ol
=tim | | [ i) a0l )

- [ fyX(x,yf(w) ,ux,,,(dw)]V(dY)'

Finally, if fe L' (X,Ag, p(-|x)) is arbitrary, we can write
f= f+ - f— Wheref+rf—>0!f+’f— el I(X,AG,,u(~|x)) and
the ranges of f, and f_. are contained in a common sub-o-
algebra of A ;. The result now follows from the additivity of
the integral.? a
Iff|X (x,p)e LYX (x,p), Z (x, 1), plx,y)), we call

E(flxy) = L( ) dol, )

2398 J. Math. Phys., Vol. 25, No. 8, August 1984

the local expectation of falong X (x, y). If fe L "(X,A g, u(-|x))
we call

E(flx)= L 1) pldo]x) = f E(f)x, yidy)

the global expectation of f at x. If fe L (X,Ar, u) we call
E(f) = Sy fdu the total expectation of f.

Il. EXAMPLES

We now give some simple examples which illustrate the
above framework. As we shall see, this framework includes
product probability spaces and conditional expectations rel-
ative to countable measurable partitions.

Example 1: Let (Y, 2y, v) and (Z, 3, ,w) be probability
spaces and let X =Y XZ. For (x,y)e X XY, let X(x, y)

=yXZ, Z(x,y)={ yxBBeZ}, p,, (yXB)=w(B).
Then M = (X, Y{X(x,): (x,y)€X XY}) is a probability
manifold. Denoting the powerset of Yby P(Y ), itis clear that
2y X2, CPY)XZ, CZ,.
Let CXDe2X, X2, be a measurable rectangle. Then
CXxXDeZ; and
My [CXDNX(x, )]

= Uy, [CXDN(YyXZ)] = yc(ywD)

This is a 2, -measurable function of y. Hence, C XD e A.
Since the intersection of two measurable rectangles is a mea-
surable rectangle, it can be shown'? that

ZyX2,CA;C 2.

Moreover,
H(C XD 1) = [ 1€ XD X . 1191dy) = UC (D)

is independent of x, so A; = A;. If we place the product
measure v X w on (X, Xy X2 ;), then M is coherent. Hence,

X2y XZz, vXw) C (X, Ag, p)
and we may think of M as a generalization of the Cartesian
product of two probability spaces. The probability of C X D
along X (x, y) becomes u(C XD |x, y) = yc(yw(D)and the
probability of C X D at x becomes
H(C XD |x)= plC XD )=vCwD)=(vXw)(C XD).
Example 2: let X=Y=R, Z,=B(R), and
viB)=(1/Jm) Sz eV dy, BeZy. For (x,y)eX XY, let
X(x,p)={x + »},Z(x,y) = { ,{x,p}},andp, , ({x + y})
= 1.Then M = (X,Y, { X (x, y):(x, y) € X XY })isaprobabil-
ity manifold. It is clear that ¥, = P(X). If 4 € 2, , then
A lx,y)= p [AnXx9)] = xa_())
It follows that A, = B(R ). For A € A;, we have

i %) = fu(A 1x, pividy) = vid — x)

:LJ e“yzdy.
\/; A—x

It follows that A = { é,R }.
Example 3. Let (X,2, u) be a probability space and let
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B,,i = 1,2,..., be a countable measurable partition of X, with
u(B;,)#£0,i=12,...Let Y= [y, y,...] be a countable set
and define X, = P(Y), v({ ;}) = u(B;). For any x € X, de-
fine X(x,y,) =B, Z(x,y,)={AnB:A€X} and pu, ,(B)
= u(B)/ u(B,) for Be 2 (x,y,;), i=1,2,.... It is clear that
Z, = 2. For A € X, we have

pid |x.y;) = 40 B;)/ u(B,),
which is a X', -measurable function, so A; = 2. Moreover,

ui{d |x, y;) is the usual conditional probability u(4 |B,),
i=1,2,.... Also for 4 € 5, we have

pid x) = J; KA |x, yidy) = Z (A 0 B)) = pld).

It follows that A = 2.

lli. LIMIT THEOREMS

In this section we consider some simple global limit
theorems which follow from local properties. We restrict our
attention to the simplest version of the strong law of large
numbers. One can prove more general versions of the law of
large numbers and also the central limit theorem. Moreover,
we only consider what we call “ g-harmonic” functions. Re-
laxing this condition would be an interesting direction for
further research. The results of this section generalize some
theorems due to Pitowski>* which are considered in the next
section.

Let (XY, {X({x,y): (x,y)€X XY}) be a probability
manifold and let f: X - R, i=1, 2, ..., be a sequence of
locally measurable functions. If /; | X (x, y) are stochastically
independent for every (x,y)eX XY, we say that f,
i = 1,2,...,arelocally independent. Iff;| X (x, y)areidentically
distributed, we say that f;, i = 1,2,..., are locally identically
distributed. Let ge L' (Y, Z,v) be a function which is not
identically zero. A locally integrable function f: X — R is g-
harmonic if E ( f|x,y) = f(x)g(y) for every (x,y) e X X Y.

Notice that if fis g-harmonic, then fis globally integra-
ble and

E(flx) = LE(flx, Yvidy) = Lf(x) g(yWidy)

= fix) Lg( YIvidy).

If follows that f is totally measurable if and only if
S gl yv{dA ) = O or fis a constant function. For a fixed x € X,

each we X is contained in a unique set X (x, y,, ). Define
independent, locally identically distributed, g-harmonic
1 ”n
wlwexiL 3 fwrgtr, u)
i=1
n i=1

11, X—Y by IT, (w) = y,.
functions.
xo) =1
(b) Ifg{ y) =0, then for every x € X
() If1/n Z7_, f; (xo) — O, then

Theorem 3. Let f;, i = 1,2,..., be a sequence of locally
@Iff (xo) =a,i=1,2,.., then

1 n
,u({weX:——- >/ (w}—»O] xo,y) =1

2399 J. Math. Phys., Vol. 25, No. 8, August 1984

,u([w eX: % i ) (w)—»O]

i=1

xo) =1

Proof: (a) Since f; (x,) = a, we have E ( f;| x,, ¥) = ag(y)
fori=1,2... . Applying the law of large numbers to X (x,, y)
we obtain

L 3 ftwraets) = ag| [  w)],

for almost every w € X (x,, y). Hence,

w({wex 7 3w [T )]

xO’y) = 1)

for every y € Y. Integrating this equation over Y gives the
result.

(b) This follows from the law of large numbers on
X (x4, y) using the fact that

E(filx,y) = filxo) g(y) =0.
(c) The proof is similar to part (a) and uses the fact that

—’11-2 E(f.-lxo,y)=5(:—)v§": filxo) — 0. 0O

i=1

i=1

i=1

The next result shows that under fairly general condi-
tions, g-harmonic functions exist. A probability space is
called a Lebesgue space if it is isomorphic to [0, 1] with Lebes-
gue measure.

Theorem 4: Let (X, Y, {X(x,y): (x,y)eX XY }) be a
probability manifold, with card (X) = card (R ), and let g:
Y—R be X y-measurable with | g(y)|<1 for every ye Y. If
X (x, y) are Lebesque spaces such that X (x,, y,) n X (x,, y,) is
at most countable whenever x, #£x,, then there exists a local-
ly measurable g-harmonic function.

Progf: The proof is similar to the methods used by Pi-
towski in his proof of Theorem 1 (see Ref. 4) so we only give
an outline. We assume the axiom of choice and the contin-
uum hypothesis. Well-order the family of sets

F={{x}uX(x,p){x,y)e X X Y}.

Since card {F') = card (R ), it follows from the continuum hy-
pothesis that there is such a well-ordering in which every
element has only countably many predecessors. We define f
by induction on this ordering.

On the first element {x,} U X (x,, y,) of the ordering de-
fine f as follows: f(x,) = 1; partition X (x,, y,) into two mea-
surable sets, one of measure [1 — g{ y,)]/2 and one of mea-
sure[1 + g{y,)]/2;definef tobe — 1onthefirstsetand + 1
on the second set. Then

L( Jf(w);t,(,,y,(arw)= 1+ gly)  1—g(y)

2 2

&y = flx,) g(»y).

Suppose we have defined fon all the elements of F up to but
not including {x_} UX(x,, y,) in the order. If x_ does not
belong to any preceding element of F, define f(x,,) = 1. Since
{x.} UX(x,,y,)is preceded by at most countably many ele-
ments and since the intersection of two different X (x, y)’sis at
most countable, f/* has already been defined on at most coun-
tably many points of X (x,, y,), which is a set of measure
zero. Hence, we can proceed as in the original step. Other-
wise, x, belongs to a preceding element. If f(x,,) = 1, pro-
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ceed as before. If f{x,) = — 1, reverse the measures of the
two sets. d

V. DETERMINISTIC SPIN MODEL

In this section we give an application to a deterministic
spin model due to Pitowski.>* However, unlike Pitowski, we
pose this model in the framework of a probability manifold.
This provides a unification of Pitowski’s work and points the
way toward generalizations. We shall outline some of Pi-
towski’s main results and we refer the reader to his works for
more details.

Let X =S C R? be the unit sphere. For x € S®,
0<O0 <11, let

X (x,0) = {uec SPu-x =cos 9 }.

Let m,, be Lebesgue measure on X (x,&) and let u,,
= (2/T sin @)~ ' m, , be the uniform distribution on X (x,0).

Define Y = [0,/7], 2, = B([0,/1]) and let v be the uniform
distribution on Y. Then M = (X,Y,{X (x,60):(x,0) e X X Y })
is a probability manifold. The next theorem shows that a
totally measurable set need not be Lebesgue measurable.
Moreover, if i, denotes the normalized Lebesgue measure
on B (S''?) then M becomes a coherent probability manifold.

Theorem5:(Pitowski)B (S?) C Arandu|B(S?) = u,.

The next theorem gives the basic result for a determinis-
tic spin model.

Theorem 6: (Pitowski) There exists a function
f€ L' X,A, u) satisfying the following.

(@) f: X—{ — 4, 4).

b)f(—w)= — flw), for every w e X.

(¢) E(f|x,0) = f(x)cos 0, for every (x,0) e X X Y.

We call f'a spin-} function. Notice that fis g-harmonic,
where g(6) = cos 8. Spin-} functions may be interpreted as
giving a deterministic spin model. In fact, if a system is de-
scribed by a spin-1 function f, then f(x) specifies the spin in
the direction x. It is not hard to show that

2 3 1
pl s ) = {005 7% =
sin“ 6/2, iff(x)= —L
This result shows that spin-! functions produce the usual
quantum mechanical probabilities.

Pitowski has shown that there exist many spin-1 func-
tions, in fact, there exist sequences of locally independent
spin-} functions. The next result shows that spin-} functions
give the usual quantum expectations. The proof of this result
follows from Theorem 3.

Theorem 7: (Pitowski) Let £}, /5, ... be a locally indepen-
dent sequence of spin-} functions satisfying f;(x,) = 1. Then

,u([weX: L > filw)— E-)-C—O] xo) =1
n 2
V. PHASE-SPACE MODEL

i=1

In this section we present a phase-space model for non-
relativistic quantum mechanics. Although we restrict our
attention to two-dimensional phase space, our results are
easily generalized to higher dimensions.

Let R 2 = {(x,k ): x, k € R } be a two-dimensional phase
space. A function fi R?— C is a probability amplitude
Sfunction if (a) for every k, f(-,k) is Lebesgue integrable,
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k — § f(x,k )dx is Lebesgue measurable, and

L Lf(x,k )dx

and (b) for every x, flx,) is Lebesgue integrable,
x — [g fix,k)dk is Lebesgue measurable, and

L L £k )dk

Let f be a probability amplitude function. For4 € B (R )
wecallF(4,k) = |f, fix,k )dx|*the P-density following an A-
measurementof Q,and F(x, A) = |f , f(x,k )dk |* the Q-den-
sity following an A-measurement of P.For 4, B € B (R )wecall
U, (B, A)= {3 F(A,k)dk the P-probability of B following an
A-measurement of Q and u, (B, 4) = f F(x, A)dx the Q-
probability of B following an A-measurement of P. The P-
probability of B given an A-measurement of Q is pp(B|4)

=up(B, A)/ up(R, A)and the Q-probability of B given an A-
measurement of Pis i, (B A )= py(B, 4)/ 1R, A4).

Notice, that for all B€ B(R)

2
dk = 1;

2
dx = 1.

2
dx,

fo(BR) = J-F(x,R Jdx = L L £k )dk

B

2
F(Rk)dk = f dk
B

uoBR)= | | Sk sax

B
are measures on B(R). If we let Y=Z=R, 2, =2,
=B(R),VB)= po(B.,R),w(B)= pp(B,R)then(Y.2,,v)
and (Z,2,,w) become probability spaces. Let
X =Y XZ=R? As in Example 1, for (x,y)e X X Y, let
X(x,y)=yXZ, Z(x,p)=[yxXB:BeZ;}, p, ,(yXB)
= w(B). Then
M, = (X’Y!{X(X!y):(x’y):(x’y) eX X Y})

is a probability manifold. In a similar way, for (x, z) € X X Z,
let X(x,2)=Y Xz, 2(x,2) = {BXz: BeZ,}, u,.(B Xz
=B ). Then

M,=(XZ{X(x,z):x,2)e X XZ})
is a probability manifold. In this way, the phase space
X = R ? can be thought of as a probability manifold with two
different local structures, given by M, and M,. The probabil-
ity amplitude function f allows us to consider the two local
structures simultaneously. Thus position and momentum
are considered simultaneously.

If ¥ € L * (R,dx), then of course ¥ corresponds to a pure
one-dimensional quantum state. The next theorem shows
that there is a corresponding probability amplitude function.

Theorem 8: If ¢ € L > (R,dx) with ||¢|| = 1, then there
exists an f:R *—C satisfying

(a) for every k e R,

flxk) = (2m)~ Yx)e ~ %, ae.[x],
(b) for every x € R,
Flx,k) = (2m) 7 Pk e, ae. [k ],

where 17/ denotes the Fourier transform of ¢.
Proof: The proof is similar to that of Theorem 4. Define

the family of sets
F={xXR,R Xkix,keR}.
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Now F can be well-ordered as in Theorem 4, We now define f
by induction. If the first set in this ordering has the form
x, X R, define fon this set by £ (x,,k ) = (27) "2 ¢{k )™ and
if the first set has the form R Xk,, define f on this set by
flx,ky) = (2m)~*h(x)e —* *. The proof now proceeds as in
Theorem 4. O

It is easy to show that fin Theorem 8 is a probability
amplitude function. We call fa probability amplitude func-
tion corresponding to i. The next theorem shows that for f to
correspond to a quantum state ¥, f must satisfy some strict
constraints. This indicates that there may be quantum sys-
tems that are not described by conventional states.

Theorem 9: A probability amplitude function f corre-
spondstoa® € L ?(R,dx)ifand only if forevery 4 € B (R ) we
have

@) [ s =[x [ stoa] e,

o) [ skt = xato) [ Awoiau

Proof: Suppose f corresponds to the quantum state ¢
Then for any 4 € B(R ) we have

[ato) [ rosna] ) = e woik) = [ rneras,
and
ot [ rtstan] " = e )= [ sisran

Conversely,

dix) =
f Flekdx = (g, ¥)" k)= 2m) =12 f Yixle

(2m) "2 ix)e -

suppose that (a) and (b) hold. Define
S fix,u)du. Then for 4 € B (R ) we have

tkx dx

Hence, for every k € R, fix,k) =
Also, for A € B(R ) we have

Lf(X,k \dk = (y.. )V (x) = (277)‘”2f dlk Je = *= dk.

= a.e[x].

Hence, for every xeR, f(x.k)=(2m)~"? dkle *,
aelk]. d

The next two results show that a probability amplitude
function corresponding to a quantum state produces the
usual quantum marginal distributions and conditional ex-
pectations. We denote the spectral measures for P and Q by
E* and E ©, respectively.

Lemma 10: Let f be a probability amplitude function
corresponding to ¢ € L ? (R,dx). Then

(a) Fldk)=|(r. ) (k)2 FRKk)= k)3
(b) Fiod)=|(dy,) @I Flxk)=|gx)%

(© mplBd) = [ g ke
priRod) = [ | 9polf i,
urldR) = [ 13tk ax

@) wolBd) = [ 1w, WP dx,
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ofReA) = [ 130 a.
poldR) = [ v dx

Proof: Straightforward application of definitions. O

Theorem 11: If fis a probability amplitude function
corresponding to ¥ € L *(R,dx), and P, denotes the one-di-
mensional projection onto ¢, then

tr [EP(B)E(4)P,E°(4)]

o B ) =

tr[EQ(B)EF(4)P,E7(4)]
b = .
bl selB ) «[ETA)P, |

Proof: (a) Denote the Fourier transform by F. Using the
fact that E?(B) is multiplication by y, and Ef(B)
= F*E9(B)F we obtain by Lemma 10,

pp(BA) =L ) MK dke = | ()" 1P

=||[F*ys Floxl? = 1EXB) x|’
=(E®B)y., ¥xa)
=(E”(B)E?(A4W,E2(4)y)

=(ECA)E"B)EC(A)P, )
=tr[EC(4)E*(B)EC(4)P, ]

=t[E"(B)EC(A)P,E2(4)].
Hence,
up(BA)
pBlA) =20
Bl = RA)
_tr[E7(B)ECA)P,E?(4)]
B tr [E2(4)P,] '

(b) As in part (a) we have
polBA) = [ () 0 dx = latics HY1°

=l xsF*ECAFY|* = ||[EC(B)E (A )y’
=(E°B)E"A)), ET(4W)
=(E"(4)EC(B)E"(4)P, ¥.¥)
=tr[EP(A)ES(B)E*(4 1Py ]
=tr[E9B)E"4)P,E"(4 )]-

Hence,

Ho(BA)

Ho(R,A)

_ tr[EC(B)EF(4)P,E*(4 1]

tr[Ef(4)P,]

KolB |4)=

'S, Gudder, Stochastic Methods in Quantum Mechanics (North Holland,
New York, 1979.

’S. Gudder, STAM Rev. 26, 71 (1984).

°I. Pitowski, Phys. Rev. Lett. 48, 1299 (1982).

“I. Pitowski, Phys. Rev. D 27, 2316 (1983).
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A method is presented for obtaining joint probability density functions which satisfy given

multivariate marginal densities.

PACS numbers: 02.50.Cw, 02.30. + g

I. INTRODUCTION

Suppose we have the marginal probability densities P,
and P, of the two sets of random variables X, = (x,,X5,....Xy)
and X, = (xy, , 1:Xn, 4 20-Xn, + n,)» TESPectively. The pur-
pose of this paper is to present a method for obtaining a joint
distribution P (x,,x,...,Xy, , y,) consistent with the margin-
als. The case where the marginals are a function of only one
variable has been extensively studied’ and a general method
has been given to generate an infinite number of joint distri-
butions for that situation.>™ We shall here consider the case
where the marginals are in general multivariate, that is,
functions of more than one random variable. We assume that
the given marginals do not have any variables in common.

What we seek are positive functions such that

J°° P(X1,X0 Xy, 1 8, )X N, 41Xy N,

= Py(x X5 X 5 ), (1.1)
JP(x,,xz,...JN‘ o, )dxy dxyedxy

= Py(Xn, 1 1re XN, 4 N, )- (1.2)

il. JOINT DISTRIBUTION

Choose any positive function, A (u,,u,,....uy) of
N (= N, + N,) variables defined in the N-dimensional unit
cube and normalize it to 1,

1
f B (Ut iy )du, duyduy =1, (2.1)
0
and let
1
Ry, otiy) = J B(uyyestiy,  n)duy o diy N,
0
(2.2)

1

holtty, | yreoslin, o n,) = f (Uit o n, AU duy
0

(2.3)
pluy,.. uy)=h—h —h,+ L (2.4)
An example of such a function is
N
h=2"1]
i=1
N,
hl = 2N‘ H u,,
i=1
N
h2 = 2N2 H u,,
i=N,+1
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o= {ZN‘ ﬁ ui—IHZ"’zi:leu,-—l}. 2.5)

i=1

An infinite number of joint distributions satisfying the mar-
ginals may be generated by

Pix),x5..xy) = P\Py[ 1 4 cplu,uy,... uy)], (2.6)
where now the «’s are defined in terms of the x’s
u; = u(X,Xp Xy, )y I=1,2,..,N, (2.7)
U =uXy {1reXyonh I=N+ LN+ N, (2.8)
insuch a way thta the Jacobian of the transformations satisfy

J, =P, (2.9)

J,=P,. (2.10)
Also, the transformation must map the infinite ¥,-dimen-
sional space into the N,-dimensional unit cube and similarly
for N,. InSec. III we will give the explicit transfomation.

The constant c is chosen so that P will be positive. Iden-

tical arguments to that previously given® implies that ¢ may
be chosen to be any number in the range

_1/L<e<1/1,, (2.11)

where — /, and [, are the absolute minimum and maximum
of p.
To show that the marginals are satisfied consider

J-w Poxy, o seeeXy, 4 N (Uppestiy)dXy o dXy oy,
- (2.12)
= JOI h(uysuy)duy, o duy = h,.
Furthermore
Jm Pyhydxy , \dxy = fol hduy , duy =1, (2.13)
ar:dwhence
J‘Pzp dxy, 1dxy N, =0, (2.14)

which proves that the first marginal condition is satisfied.
Similarly for the second.

Ill. TRANSFORMATION AND JACOBIAN

What remains to be shown is that the transformations
can be found such that the Jacobians are given by Egs. (2.9)
and (2.10). Define
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PP, Xy, = J Py(xy, Xy Jdxydx;,  (3.1)
then a transformation satisfying Eq. (2.9) is

Xy N, —i+ 1 ’ ’
PN i )(xir---va,)dxi

y= dz=1 . i<N.  (3.2)
P06, g peXy,) 1
Since
ou.
4, j<i, <Ny, (3.3)
ox;

The Jacobian is the product of the diagonal elements which
are given by

Su. pWi—i+]
a—:t = w, I.QN, (3.4)
i 1
and therefore
N (N~ i+1)
@
J = DAL EE——— (3.5)

For the other set of variables the identical procedure is fol-
lowed. Also, it s clear that as the x’s range over all space the
range of the #’s is from zero to one.

IV. CONCLUSION AND GENERALIZATION

An infinite number of P’s can be generated by choosing
different 4 ’s and ¢’s. We point out that sometimes different
H’s will lead to the same p and that also for some choices of
one could get a p identical to zero.

Generalization to more than two marginals is as fol-
lows. Suppose we have M marginals each having N, random
variables then the joint density will be a function of MN
random variables where N is the sum of the ¥,’s. For each
marginal the u transformations are chosen as above. The
joint density is given by

Plx . Xpyn) =

iz

PX)[1 4 ¢p(U, Uy, Uy)],
(4.1)

i=1

It
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where now h is a function of MN variables and

(uKi+ 1""’uK,»+N,-)’

U
X; =Xk, 4 190Xk, + W ) (4.2)
K;

=TI N,

i=1
with
PULUp) = h(U,,...,Uy)
M
~ 3 W)+ M- 1)

i=1

(4.3)

1
(U} = fo hdUdU,_, dU,, ,-dU,,.

Finch and Groblicki® have shown that for the case
where the marginals are a function of only one variable, the
procedure given above encompasses all solutions. A similar
proof holds for the multivariate case. We note that in general
h can be a functional of the marginals.
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The maximum-entropy approach to the solution of underdetermined inverse problems is studied
in detail in the context of the classical moment problem. In important special cases, such as the
Hausdorff moment problem, we establish necessary and sufficient conditions for the existence of a
maximum-entropy solution and examine the convergence of the resulting sequence of
approximations. A number of explicit illustrations are presented. In addition to some elementary
examples, we analyze the maximum-entropy reconstruction of the density of states in harmonic
solids and of dynamic correlation functions in quantum spin systems. We also briefly indicate
possible applications to the Lee~Yang theory of Ising models, to the summation of divergent
series, and so on. The general conclusion is that maximum entropy provides a valuable
approximation scheme, a serious competitor of traditional Padé-like procedures.

PACS numbers: 02.60. +y, 75.10.Jm

I. INTRODUCTION

The maximum-entropy approach to the solution of un-
derdetermined inverse problems was introduced some time
ago.'” Following the original contributions, there has been a
long debate concerning the conceptual foundations of maxi-
mum entropy for problems outside the traditional domain of
thermodynamics. The debate is currently more meaningful
than ever in view of the augmenting list of successful practi-
cal applications® which have become possible because of the
steadily increasing computing power available today. While
our aim is not to engage in further conceptual ramifications
of the rationale of maximum entropy,* we shall attempt to
sharpen its mathematical foundations and to extend its ap-
plicability to various concrete problems encountered in
quantum physics.

We consider the classical moment problem where a
positive density P (x) is sought from knowledge of its power
moments

b
J x"P(x}dx =u,, n=0,12,... (1.1)

The extent to which the density P (x) may be determined from
its moments has been extensively discussed in the mathemat-
ical literature. In practice, only a finite number of moments,
say N + 1, is usually available. Clearly then there exists an
infinite variety of functions whose first N + 1 moments coin-
cide and a unique reconstruction of P (x) is impossible. Nev-
ertheless, various approximation procedures exist which
aim at constructing specific sequences of functions Py (x),
such that

b
f x"Py(x}dx =p,, n=0,1,.,N, (1.2)

which eventually converge to the true distribution P (x) as ¥
approaches infinity. It is often mathematically expedient,
and physically useful, to abandon the requirement of
pointwise convergence and, instead, require weaker conver-
gence for averages of the form

b b
(F) = [ Frpwdx = lim [ Fiopyixds (13
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where F (x) is some known function of physical interest.

The maximum-entropy approach offers a definite pro-
cedure for the construction of a sequence of approximations.
The positive density P (x) is interpreted as a probability den-
sity and the corresponding entropy is maximized under the
condition that the first N + 1 moments be equal to the true
moments i, ,n = 0,1,..., N. Introducing appropriate La-
grange multipliers, one seeks maximization of the entropy
functional § = S (P) defined from

S = —fb [P{x)in P(x) — P(x)]dx

+ i A, (J;b x"P (x)dx —,u,,). (1.4)

n=0
Notice that we have incorporated in the definition of the
entropy a term linear in P (x), mostly for notational conve-
nience. The linear term may be absorbed by a trivial redefini-
tion of the Lagrange multiplier A, in Eq. (1.4). Returning to
the main point, the maxima P = Py(x)of (1.4)for N = 1,2,...
will be taken as a sequence of approximations for the true
density P (x). It is customary to say that the maximum-en-
tropy sequence P, (x) is the least-biased sequence of approxi-
mations.

The mathematical problem posed in the preceding
paragraph was already considered in standard works on
maximum entropy and concrete applications were also
worked out in certain cases.>>° Nonetheless, recent reviews
of a wealth of moment problems in quantum physics’ do not
even acknowledge possible use of the maximum-entropy ap-
proach. This situation is understandable because the more
popular methods, such as polynomial expansions, Padé ap-
proximants, and the like, have had the advantage of exten-
sive mathematical scrutiny over a period of a century or so.
It is clear that a similar status for maximum entropy could be
achieved only by an equally thorough study of its mathema-
tial basis, by widening the scope of concrete applications,
and by explicit comparison with the best approximation pro-
cedures currently in use.

For comparison purposes, it seems appropriate to brief-
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ly outline here some of the better known methods for ap-
proximate solutions of the moment problem. A simple possi-
bility is to expand P (x) in some set of orthogonal
polynomials. The resulting series is truncated after N + 1
terms and the expansion coefficients are determined by re-
quiring that the first NV + 1 moments be correct. This entails
the solution of a (N 4+ 1)X (N + 1) system of linear equa-
tions. Judicious choices of weighted orthogonal polynomials
could lead to rapidly convergent sequences. In practice, the
choice of a suitable weight is usually difficult, so the resulting
sequences often produce notoriously oscillating approxima-
tions to P (x) which are further impaired by lack of positivity
at each finite stage of iteration.

Alternative, usually more powerful, procedures have
been developed over the years, most of which are classified
under the generic name of Padé approximations.® For in-
stance, one may attempt to approximate the positive func-
tion P (x) by finite sums of 8-functions of the form

(N+1)/2
Pylx)= m8(x — x;}, {1.5a}
i=1
when N is odd, and
N72
Pylx)= 3 md(x —x;), x,=a, (1.5b)
i=0

when /N is even. In a language preferred by mathematicians,
one writes P (x)dx = du(x), where the nondecreasing mea-
sure u(x) is approximated by multistep functions. The pa-
rameters m, and x; in (1.5} are again determined by the re-
quirement that the first V¥ 4+ 1 moments be correct:

Zmix?z,u,,, n=0,1,.,N. {1.6)

These are nonlinear equations but their solution may be re-
duced to the diagonalization of a tridiagonal Jacobi ma-
trix.>!° The corresponding numerical procedure is appar-
ently very stable and is often quoted in the literature as the
Lanczos algorithm.'! While the preceding method does not
directly address a pointwise construction of P (x), it is well
suited for the computation of averages of the form (1.3) for
which approximations may be obtained from

(FYy =3 mF(x,). (1.7)

For the special case where F (x) = 1/(1 + zx), Eq. (1.7) is but
the standard Padé approximant associated with Stieljes inte-
grals of the form

_ (" Px)dx _ m,
<F>-L——1+Zx, (Fhv=3 5 (1.8

The distinction between even and odd & implicit in Eq. (1.5)
results in two independent sequences of approximation
which are the familiar diagonal and off-diagonal Padé se-
quences.

A number of questions raised in the preceding general
introduction will be addressed in the following to varying
degrees of completeness. In Sec. II, we briefly review well-
known facts about maximum entropy and present some new
mathematical results. In important special cases, we are able
to derive necessary and sufficient conditions for the exis-
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tence of a maximum-entropy solution and to some extent
study the convergence of the resulting sequence. The nu-
merical procedure and some elementary examples are also
discussed in Sec. II. More interesting applications are de-
scribed in the remainder of the paper. A detailed calculation
of the density of states for a harmonic face-centered-cubic
{fcc) crystal is presented in Sec. I1I and the results are com-
pared with the earlier work of Gordon and Wheeler'® using
the Padé-like procedure outlined above; Sec. IV presents a
similar calculation for dynamic correlation functions in
some typical quantum spin systems. Further applications
are contemplated in Sec. V and are illustrated by some sim-
ple exercises in the context of the Lee-Yang theory for Ising
models. The same section contains a number of concluding
remarks and some suggestions for possible generalizations.

. FORMULATION AND ELEMENTARY EXAMPLES

The starting point for our discussion is the entropy de-
fined by Eq. (1.4) for which we seek a maximum. Functional
variation with respect to the unknown density P (x) yields

N
—5—S—=O:>P= N(x):exp(—/lo—— D i,,x"),
n=1
(2.1)

SP (x)
to be supplemented by the condition that the first N + 1
moments be given by 2, :

b
f x"Pyxldx =pu,, n=0,1,.,N. (2.2)

Equations (2.2) should be viewed as a (nonlinear) system of
N + lequationsforthe N + 1 unknown Lagrange multipli-
ers Ag,A ..., Ax. Without loss of generality, we may assume
in the following that the density P (x) is normalized such that
Uo = 1. The first equation (7 = 0} in (2.2) then reads

J: Py(x)dx = J;b dx exp( — Ay — i lnxn) —1,12.3)

n=1
and may be used to express A, in terms of the remaining
Lagrange multipliers:

et = J;b dx exp( - i /Inx")EZ. (2.4)

n=1

The system of equations (2.2) reduces to

xY=u,, n=12,.,N,
bd n -—EN_ /l n

(xry=do XD 2 1 4, XT) (2.5)
Shdxexp( —ZV_,4,x")

An analytical solution of (2.5} is, of course, impossible
except for the simple case N = 1. For numerical as well as
theoretical purposes, one introduces a potential
I' =T A A,,.., Ay) through the Legendre transformation®

N
r=mz+ Y p,A, (2.6)

n=1
there the 1, ’s are the actual numerical values of the known
moments. Stationary points of the potential I” are solutions
to the equations
ar
o1

=0=(x") =u,, n=1L12,.,N, (2.7)

n
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which are precisely Egs. (2.5). The first important property
of I' is summarized in the following lemma.

Lemma I: The potential I’ = I' (4 ,A,,..., A} is every-
where convex. The proof of this result is already given in the
literature® and proceeds by explicit construction of the Hes-
sian

g =9

a, di,,
which may be proven to be positive definite for any generic
set of A ’s, not necessarily satisfying Eqgs. (2.5). A more direct
demonstration obtains by treating all Lagrange multipliers,
including 4,, on a common basis. Thus we introduce the
potential A = 4 (A,4,,..., A 5) from

4= J;b [exp( —Ao— i A,,x”) - l}dx + i Unhns(2.9)

n=1 n=20

={x"T7) — (X" (x7), (2.8)

whose stationary points are given by
aA
oA,

which recombine Egs. (2.5) with (2.4). Had we eliminated 4,
using (2.4), the first term in (2.9) would vanish and the re-
maining terms would give (with y, = 1)

N N N
A = E /unﬂn zzu()/l0+ z ﬂn/{n =1nZ+ E ﬂ'n’in’
n=0 n=1 n=1
(2.11)

which is the potential I" introduced earlier. However, one
may directly work withA = 4 (4,,4,,...,4 ) which also satis-
fies Lemma 1. The corresponding Hessian reads

aZA bd . N A
enm:—_—_—:J x x" "'ex(—— > ,,x")
ai, d,, a P

=0=(x")=u,, n=01,.,N, (2.10)

=(x"*"), (2.12)

and its positive definiteness is trivially established noting
that

nm=0,1,.,

b N
J dx(u0+u1x+...+ukx")2exp(— y i,,x”)>0,

a n=0
(2.13)

for any nonnegative integer k and for any real ug,u,,...,4, .
Equation (2.13) may be rewritten as

k k
z <x"+m>unum = Z enmunum >01

nm=0 nm=>0
which establishes that the Hessian 6, is positive definite.

In practice, the potentials I” or A may be used with
comparable efficiency. We shall therefore proceed using the
potential I". However, the potential 4 wilt prove more flexi-
ble for some generalizations discussed in Sec. V.

The convexity of I” guarantees that if a stationary point
is found for some finite values of 4,,4,,..., A 5, it must be a
unique absolute minimum. Notice, however, that convexity
alone does not imply that such a minimum should exist. This
is not surprising because the convexity of I” was established
without any reference to the specific properties of the actual
moments &,. A simple illustration may be given taking
N =1 and [e,b] = [0,1], so that

] A
sz dxe*’l'"=———1 ¢
o Ay

(2.14)
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F=In[(1—e " *)/A, 1 +uAd, (2.15)

It is not difficult to see that the convex function I'=TI"(4,)
possesses a minimum at some finite 2, only if ¢, < 1 { = ).
It is clear that this is the first of a set of conditions that the
actual moments must satisfy in order to guarantee a mini-
mum for I" = I"'{4,,...,4 ). What are those conditions?

In order to answer the above question, it is pertinent at
this point to review the general conditions under which the
full moment problem shall have a solution, independently of
the method of approximation. We restrict our discussion to
the moment problem defined over a finite interval, say [0,1],
which is the so-called Hausdorff moment problem.'? Let
P (x} be a nonnegative density integrable in {0,1] and let
{u,.,n =0,1,2,...} be the associated moment sequence. Not-
ing that

1
f x"(1 — x)*P(x)dx >0, (2.16)
0
and working out the integrand using the binomial expansion,
the left side of (2.16) may be expressed in terms of the mo-
ments 4, :

k

k
Afu,= > (= 1)’"(m>,u,1+ >0, nk=0,12,...
m=0
(2.17)

It is evident that the set of inequalities (2.17) is a set of neces-
sary conditions for the moment sequence. Such a sequence is
called completely monotonic. More importantly, Hausdorff
established the sufficiency of the above conditions. Namely,
given a completely monotonic moment sequence, there ex-
ists a nonnegative density 2 (x) integrable in [0,1] whose mo-
ments coincide with g,

Applying (2.17) for k = 1 and n = O one finds that
141 < t4o, Which is the condition we found earlier so that the
potential I" = I"(4,) of Eq. (2.15) will have a minimum. It is
tempting to presume that the general potential
I'=T (A, A,...,Ay) will have a minimum if and only if the
full set of conditions (2.17) is satisfied. That this is indeed so
is guaranteed by the following theorem.

Theorem 1: A necessary and sufficient condition that
the potential " should have a unique absolute minimum at
some finite 4,,4,,...,A for any N is that the moment se-
quence {,u,, M= 0,1,2,...} should be completely monotonic.

We first establish sufficiency which is obviously the
most relevant aspect of Theorem 1 for practical applications.
In view of the convexity, it is clear that the essence of the
proof should evolve around the asymptotic behavior of I" at
large A. Hence the Lagrange multipliers are written as

(2.18)

where A is positive and the ,’s are the familiar direction
cosines. One then obtains

N
I'=InZ+ z Hnl,

n=1

1 N N
=In [f dx exp(—/l Za”x")] +4 D paa,.
0 n=1

" (2.19)
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Our aim is to study the behavior of I" as A— o for an arbi-
trary choice of the direction cosines. It is convenient to com-
bine both terms in (2.19) and write

1
FT=hJ, J= f dx &™)
0

N

”N(x)= Z an(/l'n _xn),

n=1
so our task reduces to the study of the asymptotic behavior of
the Laplace integral J = J (4 ) at 1— 0. The general proce-
dure is explained in standard textbooks'* and the result de-
pends on the behavior of the N th degree polynomial 17, (x) in
[0,1]. The relevant property of /1,(x) for our current pur-
poses is summarized in the following lemma.

Lemma 2: If {u,,,n = 0,1,2,... } is a completely mono-
tonic moment sequence, the N th-degree polynomial
Iyx)=Z2Y_,a,(u, — x")is strictly positive in a nontrivial
subinterval of [0,1], for arbitrary real a,,a,,...,a not all of
which vanish.

The proof of the lemma proceeds by contradiction. Let
us assume that /7, (x) is not positive anywhere in [0,1], i.e.,

I,(x)<0, xe[0,1]. (2.21)

(2.20)

The polynomial /7 (x) may not be identically equal to zero
because not all of the coefficients a,a,,...,¢y vanish. It is
therefore evident that the polynomial /7, (x) may not vanish
but at a finite number of points not exceeding its degree V.
Furthermore, the general theory of Hausdorff guarantees
that given a completely monotonic moment sequence there
exists a nonnegative density P (x) whose momentsareu, = 1,
oo - While P (x) may vanish over nontrivial subintervals
of [0,1], it must also be strictly positive over some nontrivial
regions in [0,1]. Hence, in view of (2.21) and the ensuing
remarks, the product /7, (x)P (x)<0 may vanish over nontri-
vial regions but its integral over [0,1] is strictly negative:

1
f Iy (x)P(x)dx < 0. (2.22)
Q
Some implicit smoothness assumptions about P (x) are inher-
ent in the above argument; P (x) cannot be a 5-function, for
instance. On introducing the explicit expression for the po-
lynomial /7 (x} in (2.22), one finds that

N 1
Y a, f (U, — x")P(x)dx <0.
n=1 o]

Recalling that (P (x)dx = u, = 1and f) x"P (x)dx = u,, for
n = 1,2,..., the left side of (2.23) vanishes. We have thus
reached a contradiction implying that (2.21) cannot be true
over the entire interval [0,1]. Hence there exist nontrivial
regions in [0,1] where /7, (x) is strictly positive, establishing
the validity of Lemma 2.

The conditions of Lemma 2 are valid for the polynomial
IT,(x) defined in Eq. (2.20) because not all of the direction
cosines a,,a,,...,a, may vanish simultaneously in view of
the normalization constraint (2.18). Let x, be the point where
1T, (x) achieves its maximum which is positive:

(2.23)

max [Ty (x) = IT(x,) > 0.

xe[0,1]

The behavior of J (4 ) at A— oo is governed by the behavior of

(2.24)
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1T, (x) in the neighborhood of x;,. There are several cases to
consider depending on whether x,, lies at one of the endpoints
or not, and whether the corresponding derivatives

I [ (xo),IT 3(x),... vanish or not. A complete analysis of the
various cases may be found in Ref. 13, which we will not
repeat here. The general result is that J (4 ) grows exponen-
tially as A— o for an arbitrary choice of the direction co-
sines. Hence the potential I” = In J grows linearly with A in
all directions. A convex function with the above asymptotic
behavior must possess a unique absolute minimum at some
finite A,,4,,...,4 5, which establishes sufficiency in Theorem
1.

The necessity of the conditions stated in Theorem 1
does not have a direct bearing on the practical aspects of this
problem, but we briefly sketch the proof of its validity for the
sake of completeness. Let us assume that the sequence of real
numbers {u,,n = 0,1,2,...} is such that the potential I" pos-
sess a minimum at some finite 4,,4,,...,4 . We are to prove
that the sequence {x, } must be completely monotonic. Re-
call that I' is convex everywhere for arbitrary values of 1z, .
Since I” possesses a minimum, by our hypothesis, the mini-
mum is unique and absolute. Therefore, moving away from
the minimum in any direction should result in monotonical-
ly increasing values for I'. This behavior is compatible only
with a polynomial /7, (x)in Eq. (2.20) that achieves a positive
maximum at some point x, in [0,1] for any value of the direc-
tion cosines. We write

$n(X)=AlTy(x) = i Aa,(p; —X),  dulxo)>0,(2.25)

s=1
for any real A\ At,,.... A, not all of which vanish. In parti-
cular, choose

0, I<s<n,
k
Aa, =4 (—=1¢"" W) n<s<n + k, (2.26)
0, n+ k <s<N,
so that, using the notation of Eq. (2.17),
Bulx) =A%, — x(1 — x). (2.27)

The only stationary point of ¢ (x) in [0,1] is a local minimum
at the interior point x = n/(n + k). Therefore the maximum
of ¢ {x) occurs at one of the endpoints {x, = O or 1} where the
second term in (2.27) vanishes, and ¢, (x,) > O implies that
4 *u, > 0. The sequence {u,,,n = 0,1,2,...} is thus complete-
ly monotonic.

To summarize, it is gratifying that the conditions for
the existence of a maximum-entropy solution are identical to
Hausdorff’s conditions addressing the full moment problem.
Given a completely monotonic moment sequence, Theorem
1 guarantees the existence of a maximum-entropy solution
Py (x) for any N, however large. The solution Py (x) is non-
negative and integrable (in fact, absolutely continuous) in
[0,1] and satisfies the moment conditions

1
f x"Py(x)dx =u,, n=0,1,.,N. (2.28)
0

A sequence of functions Py(x), N = 1,2,... with the above
general properties converges in the sense of the following
theorem.
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Theorem 2: Let P (x) be a nonnegative function integra-
ble in [0,1] whose moments are g, ,..., and let
Py(x), N=1,2,.. be the maximum-entropy sequence asso-
ciated with the same moments. If F (x) is some continuous
function in [0,1] then

lim | F(x)Py(x)dx = JdF (x)P (x)dx. (2.29)

N—w Jo
The proof of the above theorem can be obtained by putting
together some standard results of analysis which may be
found in the book of Widder'? and are freely used in the
following. Consider the sequence of functions

Pnlx) = J-X[P(t) — Py(t)]dt, N=12,..,

0

(2.30)

each member of which is a function of bounded variation
because both P (x) and P, (x) are nonnegative. The variation
of ¥, (x) is given by

X

V[zmx)]s:f [P(t)+ Plt)]dt

0

1
<f [P(t)+ Pylt)]dt=2. (2.31)
¢]

Had we maintained arbitrary normalization for P (x) and
P (x), the right side of (2.31) would read 24, In all cases, the
right side of (2.31) is N-independent. Therefore the sequence
(2.30) is of uniform bounded variation. Hence there exists a
subsequence {¢y ; {x}}, and a function of bounded variation
¥(x), such that

Tim gy, (x) = ). 2.32)
It follows from (2.28) and (2.30) that

J: x"diy(x)=0, n=0,1,.,N, {2.33)
which combines with (2.32) to yield

Ll x"dp(x) =0, n=0,1,..c0. (2.34)

This and the uniqueness theorem for moment sequences as-
sociated with functions of bounded variation gives

Yix) =0,

for every x in [0,1]. Furthermore, every subsequence of (2.30)
has in it a subsequence that converges to a function of bound-
ed variation, and all convergent subsequences may be shown
to converge to the same limit #(x) = O by iterating the uni-
queness theorem. Therefore the original sequence (2.30) also
converges and

(2.35)

lim gy (x) = lim J [P{t)— Py(t)]dt=0, (2.36)

for every x in [0,1]. This result implies that Eq. (2.29) holds
for every continuous function F (x).

The weak convergence established by Theorem 2 was
obtained using only general properties of the maximum-en-
tropy sequence, notably, the positivity of each approximant
P, (x). In principle, it may prove possible to establish stron-
ge